MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 10

Jordan decomposition theorem

Combining the results we proved, we establish the following key result.
Jordan decomposition theorem. Let V be a finite-dimesional vector space over \mathbb{C}. For a linear transformation $\varphi: \mathrm{V} \rightarrow \mathrm{V}$, there exists a basis of V of the form

$$
\begin{gathered}
e_{1}^{(1)}, \ldots, e_{m_{1}}^{(1)} \\
e_{1}^{(2)}, \ldots, e_{m_{2}}^{(2)} \\
\ldots, \\
e_{1}^{(s)}, \ldots, e_{m_{s}}^{(s)}
\end{gathered}
$$

and scalars $\lambda_{1}, \ldots, \lambda_{s}$ such that

$$
\begin{aligned}
\left(\varphi-\lambda_{i} I\right) e_{1}^{(i)} & =e_{2}^{(i)} \\
\left(\varphi-\lambda_{i} I\right) e_{2}^{(i)} & =e_{3}^{(i)} \\
\cdots & \\
\left(\varphi-\lambda_{i} I\right) e_{m_{i}}^{(i)} & =0
\end{aligned}
$$

With respect to this basis, the matrix of φ has a block-diagonal matrix made of blocks

$$
\mathrm{J}_{\mathfrak{m}_{\mathrm{i}}}(\lambda)=\left(\begin{array}{ccccccc}
\lambda_{i} & 0 & 0 & 0 & \ldots & 0 & 0 \\
1 & \lambda_{i} & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & \lambda_{i} & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & \lambda_{i} & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & \lambda_{i}
\end{array}\right)
$$

a block $J_{m_{i}}\left(\lambda_{i}\right)$ for a thread of length m_{i}. Indeed, on each individual subspace U_{i}, we consider the linear transformation $\varphi_{\lambda}=\varphi-\lambda_{i} I$ which is nilpotent on that subspace. Therefore, our previous results allow us to find a basis of threads for this linear transformation, and its matrix is block-diagonal made of blocks

$$
\mathrm{J}_{l}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

one block J_{l} for each thread of length l. Recalling that $\varphi=B_{\lambda_{i}}+\lambda_{i} I$, we obtain the blocks mentioned above.

Examples

From our proof, one sees that for computing the Jordan normal form and a Jordan basis of a linear transformation φ on a vector space V, one can use the following plan:

- Find all eigenvalues of φ (that is, compute the characteristic polynomial $\operatorname{det}(A-c I)$ of the corresponding matrix A, and determine its roots $\left.\lambda_{1}, \ldots, \lambda_{k}\right)$.
- For each eigenvalue λ, form the linear transformation $\varphi_{\lambda}=\varphi-\lambda I$ and consider the increasing sequence of subspaces

$$
\operatorname{Ker} \varphi_{\lambda} \subset \operatorname{Ker} \varphi_{\lambda}^{2} \subset \ldots
$$

and determine where it stabilizes, that is find the smallest number k for which $\operatorname{Ker} \varphi_{\lambda}^{\mathrm{k}}=\operatorname{Ker} \varphi_{\lambda}^{\mathrm{k}+1}$. Let $\mathrm{U}=\operatorname{Ker} \varphi_{\lambda}^{k}$. The subspace U is an invariant subspace of $\varphi_{\lambda}(\operatorname{and} \varphi)$, and φ_{λ} is nilpotent on U, so it is possible to find a basis consisting of several "threads" of the form $f, \varphi_{\lambda} f, \varphi_{\lambda}^{2} f, \ldots$, where φ_{λ} shifts vectors along each thread (as in the previous homework).

- Joining all the threads (for different λ) together, we get a Jordan basis for A. A thread of length p for an eigenvalue λ contributes a Jordan block $J_{p}(\lambda)$ to the Jordan normal form.

Example 1. Let $V=\mathbb{R}^{3}$, and $A=\left(\begin{array}{ccc}-2 & 2 & 1 \\ -7 & 4 & 2 \\ 5 & 0 & 0\end{array}\right)$.
The characteristic polynomial of A is $-t+2 t^{2}-t^{3}=-t(1-t)^{2}$, so the eigenvalues of A are 0 and 1 .

$$
\text { Furthermore, } A-I=\left(\begin{array}{ccc}
-3 & 2 & 1 \\
-7 & 3 & 2 \\
5 & 0 & -1
\end{array}\right),(A-I)^{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
10 & -5 & -3 \\
-20 & 10 & 6
\end{array}\right) \text {, } \operatorname{so} \operatorname{rk}(A-I)=2, \operatorname{rk}(A-I)^{2}=1
$$

Note that $\operatorname{rk}(A)=2$. This shows that there is at least one thread of length at least 2 for the eigenvalue 1 , and at least one thread of length at least 1 for the eigenvalue 0 . Since our vector space is three-dimensional, there is nothing else, and kernels of powers stabilize from $(A-I)^{2}$ for the eigenvalue 1 and from A for the eigenvalue 0 .

To determine the basis of $\operatorname{Ker}(\mathcal{A})$, we solve the system $A v=0$ and obtain a vector $\mathrm{f}=\left(\begin{array}{c}0 \\ -1 \\ 2\end{array}\right)$.
To deal with the eigenvalue 1 , we see that the kernel of $A-I$ is spanned by the vector $\left(\begin{array}{c}1 \\ -1 \\ 5\end{array}\right)$, the kernel of $(A-I)^{2}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 10 & -5 & -3 \\ -20 & 10 & 6\end{array}\right)$ is spanned by the vectors $\left(\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}3 / 10 \\ 0 \\ 1\end{array}\right)$. Reducing the latter vectors using the former one, we end up with the relative basis vector $e=\left(\begin{array}{c}0 \\ 3 \\ -5\end{array}\right)$, which gives rise to a thread $e,(A-I) e=\left(\begin{array}{c}1 \\ -1 \\ 5\end{array}\right)$. Overall, a Jordan basis is given by $f, e,(A-I) e$, and the Jordan normal form has a block of size 1 with 0 on the diagonal, and a block of size 2 with 1 on the diagonal:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Example 2. Let $V=\mathbb{R}^{4}$, and $A=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 11 & 6 & -4 & -4 \\ 22 & 15 & -8 & -9 \\ -3 & -2 & 1 & 2\end{array}\right)$.

The characteristic polynomial of A is $1-2 t^{2}+t^{4}=(1+t)^{2}(1-t)^{2}$, so the eigenvalues of A are -1 and 1. To avoid unnecessary calculations (similar to avoiding computing $(A-I)^{3}$ in the previous example), let us compute the ranks for both eigenvalues simultaneously. For $\lambda=-1$ we have $A+I=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 11 & 7 & -4 & -4 \\ 22 & 15 & -7 & -9 \\ -3 & -2 & 1 & 3\end{array}\right), \operatorname{rk}(A+I)=3,(A+I)^{2}=\left(\begin{array}{cccc}12 & 8 & -4 & -4 \\ 12 & 8 & -4 & -4 \\ 60 & 40 & -20 & -24 \\ -12 & -8 & 4 & 8\end{array}\right), \operatorname{rk}\left((A+I)^{2}\right)=2$. For $\lambda=1$ we have $A-I=\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 11 & 5 & -4 & -4 \\ 22 & 15 & -9 & -9 \\ -3 & -2 & 1 & 1\end{array}\right), \operatorname{rk}(A-I)=3,(A-I)^{2}=\left(\begin{array}{cccc}12 & 4 & -4 & -4 \\ -32 & -16 & 12 & 12 \\ -28 & -20 & 12 & 12 \\ 0 & 0 & 0 & 0\end{array}\right)$,
$\operatorname{rk}\left((A-I)^{2}\right)=2$. This shows that there is at least one thread of length at least 2 for the eigenvalue 1 , and at least one thread of length at least 2 for the eigenvalue -1 . Since our vector space is four-dimensional, there is nothing else, and kernels of powers stabilize starting from the square for each eigenvalue.

Thus, each of these eigenvalues gives rise to a thread of length at least 2, and since our vector space is 4 -dimensional, each of the threads should be of length 2 , and in each case the stabilisation happens on the second step.

In the case of the eigenvalue -1 , we first determine the kernel of $A+I$, solving the system $(A+I) v=0$; this gives us a vector $\left(\begin{array}{c}-1 \\ 1 \\ -1 \\ 0\end{array}\right)$. The equations that determine the kernel of $(A+I)^{2}$ are $t=0,3 x+2 y=z$ so y and z are free variables, and for the basis vectors of that kernel we can take $\left(\begin{array}{c}1 / 3 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-2 / 3 \\ 1 \\ 0 \\ 0\end{array}\right)$. Reducing the basis vectors of $\operatorname{Ker}(A+I)^{2}$ using the basis vector of $\operatorname{Ker}(A+I)$, we end up with a relative basis vector $e=\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right)$, and a thread $e,(A+I) e=\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right)$.

In the case of the eigenvalue 1 , we first determine the kernel of $A-I$, solving the system $(A-I) v=0$; this gives us a vector $\left(\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right)$. The equations that determine the kernel of $(A-I)^{2}$ are $4 x=z+t, 4 y=z+t$ so z and t are free variables, and for the basis vectors of that kernel we can take $\left(\begin{array}{c}1 / 4 \\ 1 / 4 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}1 / 4 \\ 1 / 4 \\ 0 \\ 1\end{array}\right)$. Reducing the basis vectors of $\operatorname{Ker}(A-I)^{2}$ using the basis vector of $\operatorname{Ker}(A+I)$, we end up with a relative basis vector $f=\left(\begin{array}{c}1 / 4 \\ 1 / 4 \\ 0 \\ 1\end{array}\right)$, and a thread $e,(A-I) e=\left(\begin{array}{c}0 \\ 0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$.

Finally, the vectors $e,(A+I) e, f,(A-I) f$ form a Jordan basis for A; the Jordan normal form of A is $\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$.

