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Lecture 10

Jordan decomposition theorem

Combining the results we proved, we establish the following key result.
Jordan decomposition theorem. Let V be a finite-dimesional vector space over C. For a linear

transformation ϕ : V → V, there exists a basis of V of the form

e
(1)
1 , . . . , e(1)m1

,

e
(2)
1 , . . . , e(2)m2

,

. . .

e
(s)
1 , . . . , e(s)ms

and scalars λ1, . . . , λs such that

(ϕ− λiI)e
(i)
1 = e

(i)
2 ;

(ϕ− λiI)e
(i)
2 = e

(i)
3 ;

. . .

(ϕ− λiI)e
(i)
mi

= 0

With respect to this basis, the matrix of ϕ has a block-diagonal matrix made of blocks

Jmi
(λ) =



λi 0 0 0 . . . 0 0
1 λi 0 0 . . . 0 0
0 1 λi 0 . . . 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . . 0 0
0 0 0 0 . . . λi 0
0 0 0 0 . . . 1 λi


,

a block Jmi
(λi) for a thread of length mi. Indeed, on each individual subspace Ui, we consider the linear

transformation ϕλ = ϕ − λiI which is nilpotent on that subspace. Therefore, our previous results allow us
to find a basis of threads for this linear transformation, and its matrix is block-diagonal made of blocks

Jl =



0 0 0 0 . . . 0 0
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . . 0 0
0 0 0 0 . . . 0 0
0 0 0 0 . . . 1 0


,

one block Jl for each thread of length l. Recalling that ϕ = Bλi +λiI, we obtain the blocks mentioned above.
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Examples

From our proof, one sees that for computing the Jordan normal form and a Jordan basis of a linear trans-
formation ϕ on a vector space V, one can use the following plan:

• Find all eigenvalues ofϕ (that is, compute the characteristic polynomial det(A−cI) of the corresponding
matrix A, and determine its roots λ1, . . . , λk).

• For each eigenvalue λ, form the linear transformation ϕλ = ϕ−λI and consider the increasing sequence
of subspaces

Kerϕλ ⊂ Kerϕ2λ ⊂ . . .
and determine where it stabilizes, that is find the smallest number k for which Kerϕkλ = Kerϕk+1λ .
Let U = Kerϕkλ. The subspace U is an invariant subspace of ϕλ (and ϕ), and ϕλ is nilpotent on U,
so it is possible to find a basis consisting of several “threads” of the form f, ϕλf, ϕ

2
λf, . . ., where ϕλ

shifts vectors along each thread (as in the previous homework).
• Joining all the threads (for different λ) together, we get a Jordan basis for A. A thread of length p for

an eigenvalue λ contributes a Jordan block Jp(λ) to the Jordan normal form.

Example 1. Let V = R3, and A =

−2 2 1
−7 4 2
5 0 0

.

The characteristic polynomial of A is −t+ 2t2 − t3 = −t(1− t)2, so the eigenvalues of A are 0 and 1.

Furthermore, A − I =

−3 2 1
−7 3 2
5 0 −1

, (A − I)2 =

 0 0 0
10 −5 −3
−20 10 6

, so rk(A − I) = 2, rk(A − I)2 = 1.

Note that rk(A) = 2. This shows that there is at least one thread of length at least 2 for the eigenvalue 1,
and at least one thread of length at least 1 for the eigenvalue 0. Since our vector space is three-dimensional,
there is nothing else, and kernels of powers stabilize from (A − I)2 for the eigenvalue 1 and from A for the
eigenvalue 0.

To determine the basis of Ker(A), we solve the system Av = 0 and obtain a vector f =

 0
−1
2

.

To deal with the eigenvalue 1, we see that the kernel of A− I is spanned by the vector

 1
−1
5

, the kernel

of (A− I)2 =

 0 0 0
10 −5 −3
−20 10 6

 is spanned by the vectors

1/21
0

 and

3/100
1

. Reducing the latter vectors

using the former one, we end up with the relative basis vector e =

 0
3
−5

, which gives rise to a thread

e, (A − I)e =

 1
−1
5

. Overall, a Jordan basis is given by f, e, (A − I)e, and the Jordan normal form has a

block of size 1 with 0 on the diagonal, and a block of size 2 with 1 on the diagonal:0 0 0
0 1 0
0 1 1

 .

Example 2. Let V = R4, and A =


0 1 0 0
11 6 −4 −4
22 15 −8 −9
−3 −2 1 2

.
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The characteristic polynomial of A is 1 − 2t2 + t4 = (1 + t)2(1 − t)2, so the eigenvalues of A are
−1 and 1. To avoid unnecessary calculations (similar to avoiding computing (A − I)3 in the previ-
ous example), let us compute the ranks for both eigenvalues simultaneously. For λ = −1 we have

A + I =


1 1 0 0
11 7 −4 −4
22 15 −7 −9
−3 −2 1 3

, rk(A + I) = 3, (A + I)2 =


12 8 −4 −4
12 8 −4 −4
60 40 −20 −24
−12 −8 4 8

, rk((A + I)2) = 2.

For λ = 1 we have A − I =


−1 1 0 0
11 5 −4 −4
22 15 −9 −9
−3 −2 1 1

, rk(A − I) = 3, (A − I)2 =


12 4 −4 −4
−32 −16 12 12
−28 −20 12 12
0 0 0 0

,

rk((A − I)2) = 2. This shows that there is at least one thread of length at least 2 for the eigenvalue 1, and
at least one thread of length at least 2 for the eigenvalue −1. Since our vector space is four-dimensional,
there is nothing else, and kernels of powers stabilize starting from the square for each eigenvalue.

Thus, each of these eigenvalues gives rise to a thread of length at least 2, and since our vector space is
4-dimensional, each of the threads should be of length 2, and in each case the stabilisation happens on the
second step.

In the case of the eigenvalue −1, we first determine the kernel of A+ I, solving the system (A+ I)v = 0;

this gives us a vector


−1
1
−1
0

. The equations that determine the kernel of (A + I)2 are t = 0, 3x + 2y = z

so y and z are free variables, and for the basis vectors of that kernel we can take


1/3
0
1
0

 and


−2/3
1
0
0

.

Reducing the basis vectors of Ker(A + I)2 using the basis vector of Ker(A + I), we end up with a relative

basis vector e =


0
1
2
0

, and a thread e, (A+ I)e =


1
−1
1
0

.

In the case of the eigenvalue 1, we first determine the kernel of A−I, solving the system (A−I)v = 0; this

gives us a vector


0
0
1
−1

. The equations that determine the kernel of (A− I)2 are 4x = z+ t, 4y = z+ t so z

and t are free variables, and for the basis vectors of that kernel we can take


1/4
1/4
1
0

 and


1/4
1/4
0
1

. Reducing

the basis vectors of Ker(A− I)2 using the basis vector of Ker(A+ I), we end up with a relative basis vector

f =


1/4
1/4
0
1

, and a thread e, (A− I)e =


0
0
1/4
−1/4

.

Finally, the vectors e, (A + I)e, f, (A − I)f form a Jordan basis for A; the Jordan normal form of A is
−1 0 0 0
1 −1 0 0
0 0 1 0
0 0 1 1

.
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