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Lecture 11

Uniqueness of the normal form

If the matrix of a linear transformation can be made diagonal, then the diagonal entries are eigenvalues. In
case of Jordan normal forms, we have blocks of varying sizes corresponding to eigenvalues. It is natural to
ask whether the sizes of those blocks are uniquely defined, or different choices of bases can lead to different
block structures.

Let us first focus on the case of a nilpotent transformation with ϕk = 0. We denote by md the number
of threads of length d, where 1 6 d 6 k. In that case, we have

mk = dimNk − dimNk−1,

mk−1 +mk = dimNk−1 − dimNk−2,

. . .

m2 + . . .+mk = dimN2 − dimN1,

m1 +m2 + . . .+mk = dimN1,

so the numbers of threads of various lengths are uniquely determined by dimensions of kernels of powers,
which are intrinsic characteristics of the linear transformation ϕ that do not depend on any choices.

Next, we consider an arbitrary linear transformation. Suppose that λ1 is one of its eigenvalues, and let
Bλ1 = ϕ − λ1I. In course of the proof, we established that V = Ker(Bk1

λ1
) ⊕ Im(Bk1

λ1
), where k1 is the first

place where the kernels of powers of Bλ1 stabilise, so that Ker(Bk1

λ1
) = Ker(Bk1+1

λ1
) = . . .. This number k1,

as well as the subspaces Ker(Bk1

λ1
) and Im(Bk1

λ1
) are intrinsic characteristics of the linear transformation ϕ.

Thus, sizes of blocks with λ1 on the diagonal are intrinsically determined by the previous observation, and
the others are intrinsically determined by induction.

Overall, we conclude that up to the order of blocks, the Jordan normal form is an invariant of a linear
transformation; moreover, it is the only invariant, since we already established that every linear transforma-
tion has a Jordan normal form.

This statement can also be formalised in a slightly different way. Two n× n matrices A and B are said
to be similar if A = C−1BC for some invertible matrix C. Geometrically, this means that A and B represent
the same linear transformations with respect to different bases (and C is the transition matrix between two
bases). We established that A and B are similar if and only if their Jordan forms are the same.

Cayley–Hamilton theorem

The celebrated Cayley–Hamilton theorem states that “every matrix is a root of its own characteristic poly-
nomial”, that is that if we consider the characteristic polynomial χA(t) = det(A−tI) = a0+a1t+ · · ·+antn
for the given matrix A, then we have

χA(A) = a0I+ a1A+ · · ·+ anAn = 0.
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Of course, it is tempting to say that this theorem is obvious, because χA(A) = det(A−A ·I) = det(0) = 0.
However, A − tI is a matrix whose entries depend on t, and we cannot simply substitute t = A in
those entries! Another way to see the problem is to note that our “proof” would be equally applicable
to tr(A − tI) = tr(A) − t tr(I) = tr(A) − nt, but substituting t = A in that polynomial yields tr(A)I − nA,
which only is equal to zero for matrices A proportional to I. Today we shall discuss two mathematically
sound proofs of this result.

Proof 1. Let λ1, . . . , λk be all different complex eigenvalues of A. Then of course there exist positive
integers m1, . . . , mk such that

χA(t) = det(A− tI) = an(t− λ1)
m1 · · · (t− λk)mk ,

and hence
χA(A) = an(A− λ1I)

m1 · · · (A− λkI)
mk .

At the same time, we know that for some positive integers n1, . . . , nk we have

V = Ker(A− λ1I)
n1 ⊕ · · · ⊕ Ker(A− λkI)

nk .

In this decomposition, all eigenvalues of A on Ker(A − λiI)
ni are equal to λi, so the total multiplicity of

that eigenvalue, that is mi, is equal to the sum of lengths of the threads we obtain from that subspace.
The number ni, that is the exponent which annihilates the linear transformation A − λiI, is equal to the
maximum of all lengths of threads, since for a thread of length s, the power (A−λiI)

s annihilates all vectors
of that thread, and the power (A − λiI)

s−1 does not. This shows that mi > ni (the first of them is sum of
lengths of threads, the second is the maximum of lengths of threads). Therefore, the linear transformation

χA(A) = an(A− λ1I)
m1 · · · (A− λkI)

mk

annihilates each of the subspaces Ker(A− λiI)
ni , therefore annihilates their direct sum, that is V, therefore

vanishes, as required.

The second proof uses a bit of analysis that you would learn in due course in other modules.

Proof 2. Let us first assume that A is diagonalisable, that is has a basis of eigenvectors v1, . . . , vn, with
eigenvalues λ1, . . . , λn. Then

χA(t) = det(A− tI) = an(t− λ1) · · · (t− λn),

and hence
χA(A) = an(A− λ1I) · · · (A− λnI).

In this product (of commuting factors), there is a factor to annihilate each eigenvector vi, since (A−λiI)vi = 0.
Therefore, each element of the basis is annihilated by χA(A), therefore every vector is annihilated by that
transformation, therefore χA(A) = 0.

To handle an arbitrary linear transformation, note that every matrix is a limit of diagonalisable matrices
(e.g. one can take the Jordan normal form and change the diagonal entries a little bit so that they are
all distinct), and the expression χA(A) is a continuous function of A, so if it vanishes on all diagonalisable
matrices, it must vanish everywhere.
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