MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 13

Euclidean spaces

Informally, a Euclidean space is a vector space with a scalar product. Let us formulate a precise definition. In this lecture, we shall assume that our scalars are real numbers.

Definition 1. A vector space V is said to be a Euclidean space if it is equipped with a function (scalar product) $V \times V \rightarrow \mathbb{R}, \nu_{1}, \nu_{2} \mapsto\left(\nu_{1}, \nu_{2}\right)$ satisfying the following conditions:

- bilinearity: $\left(c_{1} \nu_{1}+c_{2} \nu_{2}, \nu\right)=c_{1}\left(\nu_{1}, \nu\right)+c_{2}\left(\nu_{2}, \nu\right)$ and $\left(\nu, c_{1} \nu_{1}+c_{2} \nu_{2}\right)=c_{1}\left(\nu, \nu_{1}\right)+c_{2}\left(\nu, \nu_{2}\right)$,
- symmetry: $\left(\nu_{1}, \nu_{2}\right)=\left(v_{2}, v_{1}\right)$ for all ν_{1}, v_{2},
- positivity: $(\nu, \nu) \geqslant 0$ for all ν, and $(\nu, \nu)=0$ only for $\nu=0$.

Example 1. Let $V=\mathbb{R}^{n}$ with the standard scalar product

$$
\left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right),\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)\right)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

All the three properties are trivially true.
Example 2. Let V be the vector space of continuous functions on $[0,1]$, and

$$
(f(t), g(t))=\int_{0}^{1} f(t) g(t) d t
$$

The symmetry is obvious, the bilinearity follows from linearity of the integral, and the positivity follows from the fact that if $\int_{0}^{1} h(t) d t=0$ for a nonnegative continuous function $h(t)$, then $h(t)=0$.
Lemma 1. For every scalar product and every basis e_{1}, \ldots, e_{n} of V, we have

$$
\left(x_{1} e_{1}+\ldots+x_{n} e_{n}, y_{1} e_{1}+\ldots+y_{n} e_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} y_{j}
$$

where $a_{i j}=\left(e_{i}, e_{j}\right)$.
This follows immediately from the bilinearity property of scalar products.

Orthonormal bases

A system of vectors e_{1}, \ldots, e_{k} of a Euclidean space V is said to be orthogonal, if it consists of nonzero vectors, which are pairwise orthogonal: $\left(e_{i}, e_{j}\right)=0$ for $i \neq j$. An orthogonal system is said to be orthonormal, if all its vectors are of length 1: $\left(e_{i}, e_{i}\right)=1$. Note that a basis e_{1}, \ldots, e_{n} of V is orthonormal if and only if

$$
\left(x_{1} e_{1}+\ldots+x_{n} e_{n}, y_{1} e_{1}+\ldots+y_{n} e_{n}\right)=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

for all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$.
In other words, an orthonormal basis provides us with a system of coordinates that identifies V with \mathbb{R}^{n} with the standard scalar product.

Lemma 2. An orthonormal system is linearly independent.
Proof. Indeed, assuming $c_{1} e_{1}+\ldots+c_{k} e_{k}=0$, we have

$$
0=\left(0, e_{p}\right)=\left(c_{1} e_{1}+\ldots+c_{k} e_{k}, e_{p}\right)=c_{1}\left(e_{1}, e_{p}\right)+\ldots+c_{k}\left(e_{k}, e_{p}\right)=c_{p}\left(e_{p}, e_{p}\right)=c_{p}
$$

Theorem 1. Every finite-dimensional Euclidean space has an orthonormal basis.

Proof. We shall describe a process called Gram-Schmidt orthogonalisation procedure which starts from some basis f_{1}, \ldots, f_{n}, and transform it into an orthogonal basis which we then make orthonormal. Namely, we shall prove by induction that there exists a basis $e_{1}, \ldots, e_{k-1}, f_{k}, \ldots, f_{n}$, where the first $(k-1)$ vectors form an orthogonal system and are equal to linear combinations of the first ($k-1$) vectors of the original basis. For $k=1$ the statement is empty, so there is nothing to prove. Assume that our statement is proved for some k, and let us show how to deduce it for $k+1$. Let us search for e_{k} of the form $f_{k}-a_{1} e_{1}-\ldots-a_{k-1} e_{k-1}$; this way the condition on linear combinations on the first k vectors of the original basis is automatically satisfied. Conditions (e_{k}, e_{j}) = 0 for $j=1, \ldots, k-1$ mean that

$$
0=\left(f_{k}-a_{1} e_{1}-\ldots-a_{k-1} e_{k-1}, e_{j}\right)=\left(f_{k}, e_{j}\right)-a_{1}\left(e_{1}, e_{j}\right)-\ldots-a_{k-1}\left(e_{k-1}, e_{j}\right)
$$

and the induction hypothesis guarantees that the latter is equal to

$$
\left(f_{k}, e_{j}\right)-a_{j}\left(e_{j}, e_{j}\right)
$$

so we can put $a_{j}=\frac{\left(f_{k}, e_{j}\right)}{\left(e_{j}, e_{j}\right)}$ for all $j=1, \ldots, k-1$. Clearly, the linear span of the vectors $e_{1}, \ldots, e_{k-1}, f_{k}, \ldots, f_{n}$ is the same as the linear span of the vectors $e_{1}, \ldots, e_{k-1}, e_{k}, f_{k+1}, \ldots, f_{n}$ (because we can recover the original set back: $f_{k}=e_{k}+a_{1} e_{1}+\ldots+a_{k-1} e_{k-1}$). Therefore, $e_{1}, \ldots, e_{k-1}, e_{k}, f_{k+1}, \ldots, f_{n}$ are n vectors in an n-dimensional vector space that form a spanning set; they also must form a basis.

To complete the proof, we normalise all vectors, replacing each e_{k} by $\frac{1}{\sqrt{\left(e_{k}, e_{k}\right)}} e_{k}$.
This theorem effectively says that every finite-dimensional Euclidean space can be, with a "wise" choice of a coordinate system, identified with the vector space \mathbb{R}^{n} equipped with its standard scalar product. The key point of linear algebra is exactly that: an informed choice of a coordinate system can simplify things quite significantly.

