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Lecture 13

Euclidean spaces

Informally, a Euclidean space is a vector space with a scalar product. Let us formulate a precise definition. In this
lecture, we shall assume that our scalars are real numbers.

Definition 1. A vector space V is said to be a Euclidean space if it is equipped with a function (scalar product)
VxV =R, v, v — (v1,v2) satisfying the following conditions:

e bilinearity: (c;v1 + c2v2, V) = ¢1(v1, V) + c2(v2, v) and (v, c1 vy + C2v2) = €1 (v, V1) + ¢2 (v, 2),
e symmetry: (vy, V2) = (v, v7) for all vy, v,
e positivity: (v, v) = 0 for all v, and (v, v) = 0 only for v =0.

Example 1. Let V = R" with the standard scalar product

X1 1
X2 V2

( -l - J=X1y1+ X2yt + XnYn.
Xn Yn

All the three properties are trivially true.

Example 2. Let V be the vector space of continuous functions on [0, 1], and

1
(f(t),g(t))=f0 fngde.

The symmetry is obvious, the bilinearity follows from linearity of the integral, and the positivity follows from the
fact that if fol h(t)dt =0 for a nonnegative continuous function h(?), then h(f) =0.
Lemma 1. For every scalar product and every basis ey, ..., e, of V, we have
n
(X1€1+...+ Xnep, y1€1+...+ Ynep) = Y. aijXiyj,
i,j=1
wherea;j = (e;, ej).

This follows immediately from the bilinearity property of scalar products.

Orthonormal bases

A system of vectors ey, ..., e; of a Euclidean space V is said to be orthogonal, if it consists of nonzero vectors, which
are pairwise orthogonal: (e;,e;) =0 for i # j. An orthogonal system is said to be orthonormal, if all its vectors are
oflength 1: (e;, ;) = 1. Note that a basis ey, ..., e, of V is orthonormal if and only if

(x1e1+...+xpep, y1€1+...+tynep) =X1)1+...+XnVn

forall x1,...,Xn, ¥1,.--, Yn-
In other words, an orthonormal basis provides us with a system of coordinates that identifies V with R” with
the standard scalar product.



Lemma 2. An orthonormal system is linearly independent.

Proof. Indeed, assuming cje; +...+ ciex = 0, we have

0=1(0,ep) = (cre1+...+ creg, ep) = c1(e1,ep) +...+ crleg, ep) = cplep, ep) = Cp.

Theorem 1. Every finite-dimensional Euclidean space has an orthonormal basis.

Proof. We shall describe a process called Gram-Schmidt orthogonalisation procedure which starts from some basis
fi, ..., fn, and transform it into an orthogonal basis which we then make orthonormal. Namely, we shall prove by
induction that there exists a basis ey, ..., ex-1, f, ..., fn, Where the first (k — 1) vectors form an orthogonal system
and are equal to linear combinations of the first (k—1) vectors of the original basis. For k = 1 the statement is empty;,
so there is nothing to prove. Assume that our statement is proved for some k, and let us show how to deduce it for
k+ 1. Let us search for ey of the form fx —aje; —... — ay_ ex_;; this way the condition on linear combinations on
the first k vectors of the original basis is automatically satisfied. Conditions (ex,e;) =0for j =1,..., k—1 mean that

0=(fk—aer—...—ar-1ex-1,€j) = (fr,ej) —ai(er, ej) —... — ax-1(ex-1,€j),
and the induction hypothesis guarantees that the latter is equal to
(frrej) —ajlej,ej),
_ (fre))
~ (eje))
same as the linear span of the vectors e;,...,ex_1, €k, fr+1,---, fn (because we can recover the original set back:
fr=ex+arer+...+ai_1ei_1). Therefore, ey, ..., ex_1, €k, fx+1,--., fn are nvectors in an n-dimensional vector space

that form a spanning set; they also must form a basis.

To complete the proof, we normalise all vectors, replacing each ey by ﬁek. O
€k, ek

SO we can put aj

forall j =1,...,k—1. Clearly, the linear span of the vectors e,...,ex-1, fi,..., fn is the

This theorem effectively says that every finite-dimensional Euclidean space can be, with a “wise” choice of a
coordinate system, identified with the vector space R" equipped with its standard scalar product. The key point of
linear algebra is exactly that: an informed choice of a coordinate system can simplify things quite significantly.



