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Euclidean spaces

Informally, a Euclidean space is a vector space with a scalar product. Let us formulate a precise definition. In this
lecture, we shall assume that our scalars are real numbers.

Definition 1. A vector space V is said to be a Euclidean space if it is equipped with a function (scalar product)
V ×V →R, v1, v2 7→ (v1, v2) satisfying the following conditions:

• bilinearity: (c1v1 + c2v2, v) = c1(v1, v)+ c2(v2, v) and (v,c1v1 + c2v2) = c1(v, v1)+ c2(v, v2),
• symmetry: (v1, v2) = (v2, v1) for all v1, v2,
• positivity: (v, v) Ê 0 for all v , and (v, v) = 0 only for v = 0.

Example 1. Let V =Rn with the standard scalar product

(


x1

x2
...

xn

 ,


y1

y2
...

yn

) = x1 y1 +x2 y2 +·· ·+xn yn .

All the three properties are trivially true.

Example 2. Let V be the vector space of continuous functions on [0,1], and

( f (t ), g (t )) =
∫ 1

0
f (t )g (t )d t .

The symmetry is obvious, the bilinearity follows from linearity of the integral, and the positivity follows from the
fact that if

∫ 1
0 h(t )d t = 0 for a nonnegative continuous function h(t ), then h(t ) = 0.

Lemma 1. For every scalar product and every basis e1, . . . , en of V , we have

(x1e1 + . . .+xnen , y1e1 + . . .+ ynen) =
n∑

i , j=1
ai j xi y j ,

where ai j = (ei ,e j ).

This follows immediately from the bilinearity property of scalar products.

Orthonormal bases

A system of vectors e1, . . . , ek of a Euclidean space V is said to be orthogonal, if it consists of nonzero vectors, which
are pairwise orthogonal: (ei ,e j ) = 0 for i 6= j . An orthogonal system is said to be orthonormal, if all its vectors are
of length 1: (ei ,ei ) = 1. Note that a basis e1, . . . , en of V is orthonormal if and only if

(x1e1 + . . .+xnen , y1e1 + . . .+ ynen) = x1 y1 + . . .+xn yn

for all x1, . . . , xn , y1, . . . , yn .
In other words, an orthonormal basis provides us with a system of coordinates that identifies V with Rn with

the standard scalar product.
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Lemma 2. An orthonormal system is linearly independent.

Proof. Indeed, assuming c1e1 + . . .+ ck ek = 0, we have

0 = (0,ep ) = (c1e1 + . . .+ ck ek ,ep ) = c1(e1,ep )+ . . .+ ck (ek ,ep ) = cp (ep ,ep ) = cp .

Theorem 1. Every finite-dimensional Euclidean space has an orthonormal basis.

Proof. We shall describe a process called Gram–Schmidt orthogonalisation procedure which starts from some basis
f1, . . . , fn , and transform it into an orthogonal basis which we then make orthonormal. Namely, we shall prove by
induction that there exists a basis e1, . . . , ek−1, fk , . . . , fn , where the first (k −1) vectors form an orthogonal system
and are equal to linear combinations of the first (k−1) vectors of the original basis. For k = 1 the statement is empty,
so there is nothing to prove. Assume that our statement is proved for some k, and let us show how to deduce it for
k +1. Let us search for ek of the form fk −a1e1 − . . .−ak−1ek−1; this way the condition on linear combinations on
the first k vectors of the original basis is automatically satisfied. Conditions (ek ,e j ) = 0 for j = 1, . . . ,k−1 mean that

0 = ( fk −a1e1 − . . .−ak−1ek−1,e j ) = ( fk ,e j )−a1(e1,e j )− . . .−ak−1(ek−1,e j ),

and the induction hypothesis guarantees that the latter is equal to

( fk ,e j )−a j (e j ,e j ),

so we can put a j = ( fk ,e j )
(e j ,e j ) for all j = 1, . . . ,k − 1. Clearly, the linear span of the vectors e1, . . . ,ek−1, fk , . . . , fn is the

same as the linear span of the vectors e1, . . . ,ek−1,ek , fk+1, . . . , fn (because we can recover the original set back:
fk = ek +a1e1+. . .+ak−1ek−1). Therefore, e1, . . . ,ek−1,ek , fk+1, . . . , fn are n vectors in an n-dimensional vector space
that form a spanning set; they also must form a basis.

To complete the proof, we normalise all vectors, replacing each ek by 1p
(ek ,ek )

ek .

This theorem effectively says that every finite-dimensional Euclidean space can be, with a “wise” choice of a
coordinate system, identified with the vector space Rn equipped with its standard scalar product. The key point of
linear algebra is exactly that: an informed choice of a coordinate system can simplify things quite significantly.
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