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Example of Gram–Schmidt orthogonalisation

Example 1. Consider V =R3 with the usual scalar product, and the vectors f1 =
1

1
0

 and f2 =
1

0
1

, f3 =
0

1
1

. Then

the Gram–Schmidt orthogonalisation works as follows:

• at the first step, there are no previous vectors to take care of, so we put e1 = f1 =
1

1
0

,

• at the second step we alter the vector f2, replacing it by e2 = f2 − (e1, f2)
(e1,e1) e1 = f2 − 1

2 e1 =
 1/2
−1/2

1

,

• at the third step we alter the vector f3, replacing it by e3 = f3 − (e1, f3)
(e1,e1) e1 − (e2, f3)

(e2,e2) e2 =
−2/3

2/3
2/3

,

• finally, we normalise all the vectors, obtaining
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1
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p
2p
3
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−1/2

1

 ,

p
3

2

−2/3
2/3
2/3

 .

We know that every linearly independent system of vectors can be extended to a basis. Let us show that a
similar statement holds for orthonormal systems.

Lemma 1. Every orthonormal system of vectors in an n-dimensional Euclidean space can be included in an or-
thonormal basis.

Proof. Indeed, we know that this system is linearly independent. Thus it can be extended to a basis. If we apply
the orthogonalisation procedure to this basis, we shall end up with an orthonormal basis containing our system (if
the first k vectors in the system are orthonormal, nothing would happen to them during orthogonalisation).

Lengths and angles, Cauchy–Schwartz inequality

Definition 1. Let V be an Euclidean space. We define the length of a vector v as |v | =p
(v, v), and the angle between

two nonzero vectors v and w as the only angle α such that 0 ÉαÉ 180◦ and

cosα= (v, w)

|v ||w | .

Remark 1. In the case of usual 3D vectors we could prove that (v, w) = |v ||w |cosα, because we worked with a
particular scalar product that was defined on V =R3. Now, the scalar product is a part of the structure, and can be
somewhat arbitrary, so we use our intuition from 3D to define the angle between two vectors.
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In principle, two things need to be proved for this “definition” to make sense. We need to establish that angles
are well defined, i.e. that (v,w)

|v ||w | is the cosine of some angle, and also it would be good to justify why the “length” has
various familiar properties. We do the first one here, and the second one you will get to do in your homework.

Theorem 1 (Cauchy–Schwartz Inequality). For any two vectors v, w of a Euclidean space V we have

(v, w)2 É (v, v)(w, w),

with equality attained if and only if v and w are proportional.
In particular, for nonzero vectors v and w this implies that

−1 É (v, w)

|v ||w | É 1,

so the angle α between v and w is well defined.

Proof. If v = 0, the inequality states 0 É 0, so there is nothing to prove. Otherwise, let us consider the function
f (t ) = (t v −w, t v −w) defined for a real argument t . Expanding the brackets using the bilinearity and symmetry of
scalar products, we obtain

f (t ) = t 2(v, v)−2t (v, w)+ (w, w),

so f (t ) is, for fixed v and w , a quadratic polynomial in t whose leading coefficient (v, v) is positive. Also, f (t )
assumes non-negative values for all t . This can only happen if the discriminant of f (t ) is non-positive, for if it is
positive, then f (t ) has two distinct roots t1 and t2, and we have f (t ) < 0 for t1 < t < t2. The discriminant of f (t ) is
(2(v, w))2 −4(v, v)(w, w) = 4((v, w)2 − (v, v)(w, w)), so we conclude that

(v, w)2 É (v, v)(w, w),

as required. The discriminant is zero if and only if f (t ) assumes the value 0, and if t0 is the corresponding value of
t , then t0v = w , so v and w are proportional.

Let us outline another proof, illustrating the power of linear algebra. Consider the subspace U of V spanned by
v and w . Since it is the span of two vectors, it is of dimension at most two. If its dimension is at most one, then v
and w are proportional, and our inequality is manifestly an equality. If the dimension is two, then we can choose
an orthonormal basis, thus identifying U with R2. In R2, (v, w) = |v ||w |cosα, so the inequality is obvious.

Orthogonal complements

Now that we defined angles, we can in particular make better sense of orthogonality: (v, w) = 0 implies that the
angle between v and w is equal to 90◦, so v and w are orthogonal in the usual sense.

Definition 2. Let U be a subspace of a Euclidean space V . The set of all vectors v such that (v,u) = 0 for all u ∈U
is called the orthogonal complement of U , and is denoted by U⊥.

Lemma 2. For every subspace U , U⊥ is also a subspace.

Proof. This follows immediately from the bilinearity property of scalar products: for example, if v1, v2 ∈U⊥, then
for each u ∈U we have (u, v1 + v2) = (u, v1)+ (u, v2) = 0.
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