MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 15

Orthogonal complements

Lemma 1. For every subspace U, we have $U \cap U^{\perp}=\{0\}$.
Proof. Indeed, if $u \in U \cap U^{\perp}$, we have $(u, u)=0$, so $u=0$.
Lemma 2. For every finite-dimensional subspace $U \subset V$, we have $V=U \oplus U^{\perp}$. (This justifies the name "orthogonal complement" for U^{\perp}.)

Proof. Let e_{1}, \ldots, e_{k} be an orthonormal basis of U. To prove that the direct sum coincides with V, it is enough to prove $V=U+U^{\perp}$, or in other words that every vector $v \in V$ can be represented in the form $u+u^{\perp}$, where $u \in U$, $u^{\perp} \in U^{\perp}$. Equivalently, we need to represent v in the form $c_{1} e_{1}+\ldots+c_{k} e_{k}+u^{\perp}$, where c_{1}, \ldots, c_{k} are unknown coefficients. Computing scalar products with e_{j} for $j=1, \ldots, k$, we get a system of equations to determine c_{i} :

$$
\left(c_{1} e_{1}+\ldots+c_{k} e_{k}+u^{\perp}, e_{j}\right)=\left(\nu, e_{j}\right)
$$

Due to orthonormality of our basis and the definition of the orthogonal complement, the left hand side of this equation is c_{j}. On the other hand, it is easy to see that for every v, the vector

$$
v-\left(v, e_{1}\right) e_{1}-\ldots,\left(v, e_{k}\right) e_{k}
$$

is orthogonal to all e_{j}, and so to all vectors from U, and so belongs to U^{\perp}.
Corollary 1 (Bessel's inequality). For any vector $v \in V$ and any orthonormal system e_{1}, \ldots, e_{k} (not necessarily a basis) we have

$$
(v, v) \geqslant\left(v, e_{1}\right)^{2}+\ldots+\left(v, e_{k}\right)^{2}
$$

Proof. Indeed, we can take $U=\operatorname{span}\left(e_{1}, \ldots, e_{k}\right)$ and represent $v=u+u^{\perp}$. Then

$$
(v, v)=\left(u+u^{\perp}, u+u^{\perp}\right)=(u, u)+\left(u^{\perp}, u^{\perp}\right)
$$

because $\left(u, u^{\perp}\right)=0$, so

$$
|v|^{2}=|u|^{2}+\left|u^{\perp}\right|^{2} \geqslant|u|^{2}=\left(u, e_{1}\right)^{2}+\ldots+\left(u, e_{k}\right)^{2}=\left(v, e_{1}\right)^{2}+\ldots+\left(v, e_{k}\right)^{2} .
$$

An application of Bessel's inequality

Let us consider the Euclidean space of all continuous functions on $[-1,1]$ with the scalar product

$$
(f(t), g(t))=\int_{-1}^{1} f(t) g(t) d t
$$

Let us check that the functions

$$
e_{1}=\sin \pi t, \ldots, e_{n}=\sin \pi n t
$$

form an orthonormal system there. We have

$$
\left(e_{k}, e_{l}\right)=\int_{-1}^{1} \sin (k \pi t) \sin (l \pi t) d t=\int_{-1}^{1} \frac{1}{2}(\cos ((k-l) \pi t)-\cos ((k+l) \pi t)) d t=\left\{\begin{array}{l}
0, k \neq l, \\
1, k=l,
\end{array}\right.
$$

because $\int_{-1}^{1} \cos (m \pi t) d t=\left.\frac{\sin (m \pi t)}{m}\right|_{-1} ^{1}=0$ for $m \neq 0$.
Let us now consider the function $h(t)=t$. We have

$$
\begin{gathered}
(h(t), h(t))=\frac{2}{3} \\
\left(h(t), e_{k}\right)=\frac{2(-1)^{k+1}}{k \pi},
\end{gathered}
$$

(the latter integral requires integration by parts to compute it), so Bessel's inequality implies that

$$
\frac{2}{3} \geqslant \frac{4}{\pi^{2}}+\frac{4}{4 \pi^{2}}+\frac{4}{9 \pi^{2}}+\ldots+\frac{4}{n^{2} \pi^{2}}
$$

which can be rewritten as

$$
\frac{\pi^{2}}{6} \geqslant 1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}} .
$$

Actually $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$, which was first proved by Euler. We are not able to establish it here, but it is worth mentioning that Bessel's inequality gives a sharp bound for this sum.

