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Orthogonal complements

Lemma 1. For every subspace U , we have U ∩U⊥ = {0}.

Proof. Indeed, if u ∈U ∩U⊥, we have (u,u) = 0, so u = 0.

Lemma 2. For every finite-dimensional subspace U ⊂V , we have V =U ⊕U⊥. (This justifies the name “orthogonal
complement” for U⊥.)

Proof. Let e1, . . . , ek be an orthonormal basis of U . To prove that the direct sum coincides with V , it is enough to
prove V =U +U⊥, or in other words that every vector v ∈ V can be represented in the form u +u⊥, where u ∈U ,
u⊥ ∈ U⊥. Equivalently, we need to represent v in the form c1e1 + . . .+ ck ek +u⊥, where c1, . . . , ck are unknown
coefficients. Computing scalar products with e j for j = 1, . . . ,k, we get a system of equations to determine ci :

(c1e1 + . . .+ ck ek +u⊥,e j ) = (v,e j ).

Due to orthonormality of our basis and the definition of the orthogonal complement, the left hand side of this
equation is c j . On the other hand, it is easy to see that for every v , the vector

v − (v,e1)e1 − . . . , (v,ek )ek

is orthogonal to all e j , and so to all vectors from U , and so belongs to U⊥.

Corollary 1 (Bessel’s inequality). For any vector v ∈ V and any orthonormal system e1, . . . , ek (not necessarily a
basis) we have

(v, v) Ê (v,e1)2 + . . .+ (v,ek )2.

Proof. Indeed, we can take U = span(e1, . . . ,ek ) and represent v = u +u⊥. Then

(v, v) = (u +u⊥,u +u⊥) = (u,u)+ (u⊥,u⊥)

because (u,u⊥) = 0, so

|v |2 = |u|2 +|u⊥|2 Ê |u|2 = (u,e1)2 + . . .+ (u,ek )2 = (v,e1)2 + . . .+ (v,ek )2.

An application of Bessel’s inequality

Let us consider the Euclidean space of all continuous functions on [−1,1] with the scalar product

( f (t ), g (t )) =
∫ 1

−1
f (t )g (t )d t .

Let us check that the functions
e1 = sinπt , . . . ,en = sinπnt
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form an orthonormal system there. We have

(ek ,el ) =
∫ 1

−1
sin(kπt )sin(lπt )d t =

∫ 1

−1

1

2
(cos((k − l )πt )−cos((k + l )πt ))d t =

{
0,k 6= l ,

1,k = l ,

because
∫ 1
−1 cos(mπt )d t = sin(mπt )

m

∣∣∣1

−1
= 0 for m 6= 0.

Let us now consider the function h(t ) = t . We have

(h(t ),h(t )) = 2

3
,

(h(t ),ek ) = 2(−1)k+1

kπ
,

(the latter integral requires integration by parts to compute it), so Bessel’s inequality implies that

2

3
Ê 4

π2 + 4

4π2 + 4

9π2 + . . .+ 4

n2π2 ,

which can be rewritten as
π2

6
Ê 1+ 1

4
+ 1

9
+ . . .+ 1

n2 .

Actually
∞∑

k=1

1
k2 = π2

6 , which was first proved by Euler. We are not able to establish it here, but it is worth mentioning

that Bessel’s inequality gives a sharp bound for this sum.
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