MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 15

Orthogonal complements

Lemma 1. For every subspace U, we have $U \cap U^{\perp} = \{0\}$.

Proof. Indeed, if $u \in U \cap U^{\perp}$, we have (u, u) = 0, so u = 0.

Lemma 2. For every finite-dimensional subspace $U \subset V$, we have $V = U \oplus U^{\perp}$. (This justifies the name "orthogonal complement" for U^{\perp} .)

Proof. Let e_1, \ldots, e_k be an orthonormal basis of U. To prove that the direct sum coincides with V, it is enough to prove $V = U + U^{\perp}$, or in other words that every vector $v \in V$ can be represented in the form $u + u^{\perp}$, where $u \in U$, $u^{\perp} \in U^{\perp}$. Equivalently, we need to represent v in the form $c_1e_1 + \ldots + c_ke_k + u^{\perp}$, where c_1, \ldots, c_k are unknown coefficients. Computing scalar products with e_j for $j = 1, \ldots, k$, we get a system of equations to determine c_i :

$$(c_1e_1 + \ldots + c_ke_k + u^{\perp}, e_j) = (v, e_j)$$

Due to orthonormality of our basis and the definition of the orthogonal complement, the left hand side of this equation is c_i . On the other hand, it is easy to see that for every v, the vector

$$v - (v, e_1)e_1 - \dots, (v, e_k)e_k$$

is orthogonal to all e_i , and so to all vectors from U, and so belongs to U^{\perp} .

Corollary 1 (Bessel's inequality). For any vector $v \in V$ and any orthonormal system e_1, \ldots, e_k (not necessarily a basis) we have

 $(v, v) \ge (v, e_1)^2 + \ldots + (v, e_k)^2.$

Proof. Indeed, we can take $U = \text{span}(e_1, \dots, e_k)$ and represent $v = u + u^{\perp}$. Then

$$(v, v) = (u + u^{\perp}, u + u^{\perp}) = (u, u) + (u^{\perp}, u^{\perp})$$

because $(u, u^{\perp}) = 0$, so

$$|v|^{2} = |u|^{2} + |u^{\perp}|^{2} \ge |u|^{2} = (u, e_{1})^{2} + \ldots + (u, e_{k})^{2} = (v, e_{1})^{2} + \ldots + (v, e_{k})^{2}.$$

An application of Bessel's inequality

Let us consider the Euclidean space of all continuous functions on [-1, 1] with the scalar product

$$(f(t), g(t)) = \int_{-1}^{1} f(t)g(t) dt$$

Let us check that the functions

$$e_1 = \sin \pi t, \dots, e_n = \sin \pi n t$$

form an orthonormal system there. We have

$$(e_k, e_l) = \int_{-1}^{1} \sin(k\pi t) \sin(l\pi t) \, dt = \int_{-1}^{1} \frac{1}{2} (\cos((k-l)\pi t) - \cos((k+l)\pi t)) \, dt = \begin{cases} 0, k \neq l, \\ 1, k = l, \end{cases}$$

because $\int_{-1}^{1} \cos(m\pi t) dt = \frac{\sin(m\pi t)}{m} \Big|_{-1}^{1} = 0$ for $m \neq 0$. Let us now consider the function h(t) = t. We have

$$(h(t), h(t)) = \frac{2}{3},$$

$$(h(t), e_k) = \frac{2(-1)^{k+1}}{k\pi},$$

(the latter integral requires integration by parts to compute it), so Bessel's inequality implies that

$$\frac{2}{3} \ge \frac{4}{\pi^2} + \frac{4}{4\pi^2} + \frac{4}{9\pi^2} + \dots + \frac{4}{n^2\pi^2},$$

which can be rewritten as

$$\frac{\pi^2}{6} \ge 1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2}.$$

Actually $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$, which was first proved by Euler. We are not able to establish it here, but it is worth mentioning that Bessel's inequality gives a sharp bound for this sum.