
MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 16

In the first half of this module, matrices were used to represent linear maps. We shall temporarily take the out-
look which views symmetric matrices in the spirit of one of the proofs from last week, and looks at the associated
bilinear forms (and quadratic forms). Let us start with a motivating example.

Motivation

Example 1. Consider a function f (x1, . . . , xn) of n scalar real arguments. Let x0 = x0
1e1 +·· ·+x0

nen be a point in Rn ,
and assume that the function f is smooth enough to consider its Taylor series to order two near the point x0:

f (x) = f (x0)+
k∑

i=1
(xi −x0

i )
∂ f

∂xi
(x0)+ 1

2

n∑
i , j=1

(xi −x0
i )(x j −x0

j )
∂2 f

∂xi x j
(x0)+o(|x−x0|2).

Suppose that we would like to know whether f attains its locally minimal/maximal value at x0. Then, since in the
first order of magnitude we have

f (x) = f (x0)+
k∑

i=1
(xi −x0

i )
∂ f

∂xi
(x0)+o(|x−x0|),

we conclude that a necessary condition is ∂ f
∂xi

(x0) = 0 for all i , that is the gradient of f vanishes at x0. In this case,
we have

f (x) = f (x0)+ 1

2

n∑
i , j=1

(xi −x0
i )(x j −x0

j )
∂2 f

∂xi x j
(x0)+o(|x−x0|2),

so the difference between f (x) and f (x0), when x is close to x0, is approximately equal to 1
2 q(x−x0), where

q(y) = a11 y2
1 +2a12 y1 y2 +·· ·+2a1n y1 yn + y2

2 +2a23 y2 y3 +·· ·+ann y2
n ,

where for brevity we denote ai j = ∂2 f
∂xi x j

(x0); we have ai j = a j i whenever the function f is smooth enough. The

function q(y) is a very typical example of a quadratic form.

Bilinear and quadratic forms

Definition 1. Let V be a vector space. A function q : V →R is said to be a quadratic form if for some basis e1, . . . ,en

of V we have
q(x1e1 +·· ·+xnen) = ∑

1Éi , jÉn
ai j xi x j ,

where ai j are some scalars. In other words, the value of q on a vector is a quadratic polynomial in coordinates of a
vector.

Remark 1. It is easy to see that if the condition from the definition holds for some basis, then it holds for any basis,
since coordinates relative to different bases are related by transition matrices in a linear way.
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One simple example of a quadratic form is

q(x) = x2
1 +·· ·+x2

n .

In general, if V is a Euclidean vector space then q(x) = (x, x) is certainly a quadratic form. This can be generalised:
every bilinear form gives rise to a quadratic form.

Definition 2. Let V be a vector space. A function V ×V → R, v1, v2 7→ b(v1, v2) is called a bilinear form if for all
vectors v, v1, v2 the following conditions are satisfied:

b(c1v1 + c2v2, v) = c1b(v1, v)+ c2b(v2, v) and b(v,c1v1 + c2v2) = c1b(v, v1)+ c2b(v, v2).

A bilinear form is said to be symmetric if b(v1, v2) = b(v2, v1) for all v1, v2. A symmetric bilinear form is said to be
positive definite, if b(v, v) Ê 0 for all v , and b(v, v) = 0 only for v = 0.

In these words, a function of two vector arguments is a scalar product if and only if it is bilinear, symmetric,
and positive definite.

Another important class of bilinear forms is given by skew-symmetric ones: a bilinear form is said to be skew-
symmetric if b(v1, v2) =−b(v2, v1) for all v1, v2. Those appear very frequently in differential geometry and advanced
classical mechanics.

Remark 2. Generalising what we proved about scalar products, for every bilinear form b and every basis e1, . . . , en

of V , we have

b(x1e1 + . . .+xnen , y1e1 + . . .+ ynen) =
n∑

i , j=1
bi j xi y j ,

where bi j = b(ei ,e j ). Moreover, writing this sum as

n∑
i=1

xi

n∑
j=1

bi j y j ,

we see that
b(x1e1 + . . .+xnen , y1e1 + . . .+ ynen) = xT B y,

where the n ×n-matrix B has entries bi j . (Strictly speaking, xT B y is a 1×1-matrix, but that is essentially the same
as a single number.)

Every bilinear form b gives rise to a quadratic form by putting q(x) = b(x, x), for example, the bilinear form

b(x1e1 +x2e2, y1e1 + y2e2) = 2x1 y2

gives rise to a quadratic form 2x1x2, and the bilinear form

b(x1e1 +x2e2, y1e1 + y2e2) = x1 y2 +x2 y1

gives rise to the same quadratic form. It turns out that the reconstruction of b from q is unique if we assume that
b is symmetric; in this case the reconstruction formula is

b(v, w) := 1

2
(q(v +w)−q(v)−q(w)).

One celebrated example of a quadratic form is q(x1, x2, x3, t ) = x2
1 + x2

2 + x2
3 − t 2 on the Minkowski space R4, it

is used in special relativity theory. This (sort of) motivates the next few results. We shall now formulate them (in
order to use them in the next homework), and next week we shall discuss their proofs in detail.
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Four theorems about signed sums of squares

Theorem 1 (Canonical form). Let q be a quadratic form on a vector space V . There exists a basis e1, . . . ,en of V for
which the quadratic form q becomes a signed sum of squares:

q(x1e1 +·· ·+xnen) =
n∑

i=1
εi x2

i ,

where all numbers εi are either 1 or −1 or 0.

Theorem 2 (Law of inertia). In the previous theorem, the triple (n+,n−,n0), where n± is the number of εi equal to
±1, and n0 is the number of εi equal to 0, does not depend on the choice of the basis e1, . . . ,en . This triple is often
referred to as the signature of the quadratic form q.

Let B = (bi j ) be the matrix of a given symmetric bilinear form b on V . We shall now discuss some methods of
computing the signature of b via the matrix elements of B . We denote by Bk the k ×k-matrix whose entries are bi j

with 1 É i , j É k, that is the top left corner submatrix of B , and put ∆0 = 1 and ∆k := det(Bk ) for 1 É k É n.

Theorem 3 (Jacobi theorem). Suppose that for all i = 1, . . . ,n we have ∆i 6= 0. Then the number of 1’s, 0’s and −1’s
in the canonical form is equal to the number of positive numbers, zeros, and negative numbers among the numbers
∆k−1
∆k

, k = 1, . . . ,n.

Theorem 4 (Sylvester theorem). The given symmetric bilinear form is positive definite if and only if

∆k > 0 for all k = 1, . . . ,n.
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