MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 16

In the first half of this module, matrices were used to represent linear maps. We shall temporarily take the outlook which views symmetric matrices in the spirit of one of the proofs from last week, and looks at the associated bilinear forms (and quadratic forms). Let us start with a motivating example.

Motivation

Example 1. Consider a function $f\left(x_{1}, \ldots, x_{n}\right)$ of n scalar real arguments. Let $\mathbf{x}^{0}=x_{1}^{0} e_{1}+\cdots+x_{n}^{0} e_{n}$ be a point in \mathbb{R}^{n}, and assume that the function f is smooth enough to consider its Taylor series to order two near the point \mathbf{x}^{0} :

$$
f(\mathbf{x})=f\left(\mathbf{x}^{0}\right)+\sum_{i=1}^{k}\left(x_{i}-x_{i}^{0}\right) \frac{\partial f}{\partial x_{i}}\left(\mathbf{x}^{0}\right)+\frac{1}{2} \sum_{i, j=1}^{n}\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right) \frac{\partial^{2} f}{\partial x_{i} x_{j}}\left(\mathbf{x}^{0}\right)+o\left(\left|\mathbf{x}-\mathbf{x}^{0}\right|^{2}\right) .
$$

Suppose that we would like to know whether f attains its locally minimal/maximal value at \mathbf{x}^{0}. Then, since in the first order of magnitude we have

$$
f(\mathbf{x})=f\left(\mathbf{x}^{0}\right)+\sum_{i=1}^{k}\left(x_{i}-x_{i}^{0}\right) \frac{\partial f}{\partial x_{i}}\left(\mathbf{x}^{0}\right)+o\left(\left|\mathbf{x}-\mathbf{x}^{0}\right|\right)
$$

we conclude that a necessary condition is $\frac{\partial f}{\partial x_{i}}\left(\mathbf{x}^{0}\right)=0$ for all i, that is the gradient of f vanishes at \mathbf{x}^{0}. In this case, we have

$$
f(\mathbf{x})=f\left(\mathbf{x}^{0}\right)+\frac{1}{2} \sum_{i, j=1}^{n}\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right) \frac{\partial^{2} f}{\partial x_{i} x_{j}}\left(\mathbf{x}^{0}\right)+o\left(\left|\mathbf{x}-\mathbf{x}^{0}\right|^{2}\right),
$$

so the difference between $f(\mathbf{x})$ and $f\left(\mathbf{x}^{0}\right)$, when \mathbf{x} is close to \mathbf{x}^{0}, is approximately equal to $\frac{1}{2} q\left(\mathbf{x}-\mathbf{x}^{0}\right)$, where

$$
q(\mathbf{y})=a_{11} y_{1}^{2}+2 a_{12} y_{1} y_{2}+\cdots+2 a_{1 n} y_{1} y_{n}+y_{2}^{2}+2 a_{23} y_{2} y_{3}+\cdots+a_{n n} y_{n}^{2}
$$

where for brevity we denote $a_{i j}=\frac{\partial^{2} f}{\partial x_{i} x_{j}}\left(\mathbf{x}^{0}\right)$; we have $a_{i j}=a_{j i}$ whenever the function f is smooth enough. The function $q(\mathbf{y})$ is a very typical example of a quadratic form.

Bilinear and quadratic forms

Definition 1. Let V be a vector space. A function $q: V \rightarrow \mathbb{R}$ is said to be a quadratic form if for some basis e_{1}, \ldots, e_{n} of V we have

$$
q\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=\sum_{1 \leqslant i, j \leqslant n} a_{i j} x_{i} x_{j}
$$

where $a_{i j}$ are some scalars. In other words, the value of q on a vector is a quadratic polynomial in coordinates of a vector.

Remark 1. It is easy to see that if the condition from the definition holds for some basis, then it holds for any basis, since coordinates relative to different bases are related by transition matrices in a linear way.

One simple example of a quadratic form is

$$
q(x)=x_{1}^{2}+\cdots+x_{n}^{2}
$$

In general, if V is a Euclidean vector space then $q(x)=(x, x)$ is certainly a quadratic form. This can be generalised: every bilinear form gives rise to a quadratic form.

Definition 2. Let V be a vector space. A function $V \times V \rightarrow \mathbb{R}, v_{1}, v_{2} \mapsto b\left(v_{1}, v_{2}\right)$ is called a bilinear form if for all vectors ν, v_{1}, v_{2} the following conditions are satisfied:

$$
b\left(c_{1} v_{1}+c_{2} v_{2}, v\right)=c_{1} b\left(v_{1}, v\right)+c_{2} b\left(v_{2}, v\right) \quad \text { and } \quad b\left(v, c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} b\left(v, v_{1}\right)+c_{2} b\left(v, v_{2}\right)
$$

A bilinear form is said to be symmetric if $b\left(v_{1}, v_{2}\right)=b\left(v_{2}, v_{1}\right)$ for all ν_{1}, v_{2}. A symmetric bilinear form is said to be positive definite, if $b(v, v) \geqslant 0$ for all v, and $b(\nu, v)=0$ only for $v=0$.

In these words, a function of two vector arguments is a scalar product if and only if it is bilinear, symmetric, and positive definite.

Another important class of bilinear forms is given by skew-symmetric ones: a bilinear form is said to be skewsymmetric if $b\left(\nu_{1}, v_{2}\right)=-b\left(v_{2}, v_{1}\right)$ for all ν_{1}, v_{2}. Those appear very frequently in differential geometry and advanced classical mechanics.

Remark 2. Generalising what we proved about scalar products, for every bilinear form b and every basis e_{1}, \ldots, e_{n} of V, we have

$$
b\left(x_{1} e_{1}+\ldots+x_{n} e_{n}, y_{1} e_{1}+\ldots+y_{n} e_{n}\right)=\sum_{i, j=1}^{n} b_{i j} x_{i} y_{j}
$$

where $b_{i j}=b\left(e_{i}, e_{j}\right)$. Moreover, writing this sum as

$$
\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} b_{i j} y_{j}
$$

we see that

$$
b\left(x_{1} e_{1}+\ldots+x_{n} e_{n}, y_{1} e_{1}+\ldots+y_{n} e_{n}\right)=x^{T} B y
$$

where the $n \times n$-matrix B has entries $b_{i j}$. (Strictly speaking, $x^{T} B y$ is a 1×1-matrix, but that is essentially the same as a single number.)

Every bilinear form b gives rise to a quadratic form by putting $q(x)=b(x, x)$, for example, the bilinear form

$$
b\left(x_{1} e_{1}+x_{2} e_{2}, y_{1} e_{1}+y_{2} e_{2}\right)=2 x_{1} y_{2}
$$

gives rise to a quadratic form $2 x_{1} x_{2}$, and the bilinear form

$$
b\left(x_{1} e_{1}+x_{2} e_{2}, y_{1} e_{1}+y_{2} e_{2}\right)=x_{1} y_{2}+x_{2} y_{1}
$$

gives rise to the same quadratic form. It turns out that the reconstruction of b from q is unique if we assume that b is symmetric; in this case the reconstruction formula is

$$
b(v, w):=\frac{1}{2}(q(v+w)-q(v)-q(w)) .
$$

One celebrated example of a quadratic form is $q\left(x_{1}, x_{2}, x_{3}, t\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-t^{2}$ on the Minkowski space \mathbb{R}^{4}, it is used in special relativity theory. This (sort of) motivates the next few results. We shall now formulate them (in order to use them in the next homework), and next week we shall discuss their proofs in detail.

Four theorems about signed sums of squares

Theorem 1 (Canonical form). Let q be a quadratic form on a vector space V. There exists a basis e_{1}, \ldots, e_{n} of V for which the quadratic form q becomes a signed sum of squares:

$$
q\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=\sum_{i=1}^{n} \varepsilon_{i} x_{i}^{2}
$$

where all numbers ε_{i} are either 1 or -1 or 0.
Theorem 2 (Law of inertia). In the previous theorem, the triple $\left(n_{+}, n_{-}, n_{0}\right)$, where $n_{ \pm}$is the number of ε_{i} equal to ± 1, and n_{0} is the number of ε_{i} equal to 0 , does not depend on the choice of the basis e_{1}, \ldots, e_{n}. This triple is often referred to as the signature of the quadratic form q.

Let $B=\left(b_{i j}\right)$ be the matrix of a given symmetric bilinear form b on V. We shall now discuss some methods of computing the signature of b via the matrix elements of B. We denote by B_{k} the $k \times k$-matrix whose entries are $b_{i j}$ with $1 \leqslant i, j \leqslant k$, that is the top left corner submatrix of B, and put $\Delta_{0}=1$ and $\Delta_{k}:=\operatorname{det}\left(B_{k}\right)$ for $1 \leqslant k \leqslant n$.

Theorem 3 (Jacobi theorem). Suppose that for all $i=1, \ldots, n$ we have $\Delta_{i} \neq 0$. Then the number of 1 's, 0 's and -1 's in the canonical form is equal to the number of positive numbers, zeros, and negative numbers among the numbers $\frac{\Delta_{k-1}}{\Delta_{k}}, k=1, \ldots, n$.

Theorem 4 (Sylvester theorem). The given symmetric bilinear form is positive definite if and only if

$$
\Delta_{k}>0 \text { for all } k=1, \ldots, n
$$

