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Lecture 17

Today we shall prove various theorems on quadratic forms stated without proof last week.

Theorem 1. Let q be a quadratic form on a vector space V . There exists a basis f1, . . . , fn of V for which the quadratic
form q becomes a signed sum of squares:

q(x1 f1 +·· ·+xn fn) =
n∑

i=1
εi x2

i ,

where all numbers εi are either 1 or −1 or 0.

Proof. Informally, the slogan behind the proof we shall present is “imitate the Gram–Schmidt procedure”. Let us
make it precise. We shall argue by induction on dimV , the basis of induction being dimV = 0, when the basis is
empty, so there is nothing to prove.

Suppose dimV = n > 0. There are two cases to consider. First, it might be the case that q(v) = 0 for all v . In this
case, any basis would work, with εi = 0 for all i .

Otherwise, there exists a vector v such that q(v) 6= 0. Let us extend it to a basis e1 = v , e2, . . . , en , and look at the
symmetric bilinear form b(v, w) = 1

2 (q(v +w)−q(v)−q(w)) associated to the quadratic form q . We claim that we
can change the basis e1, . . . , en into a basis e ′1,e ′2, . . . ,e ′n with e ′1 = e1 = v and b(e ′i ,e ′1) = 0 for all i = 2, . . . ,n. Indeed,

we can put e ′i = ei − b(ei ,e1)
b(e1,e1) e1 for i > 1; here division by b(e1,e1) is possible since b(e1,e1) = q(e1) = q(v) 6= 0. We

can now consider the linear span of e ′2, . . . ,e ′n with the bilinear form q , and proceed by induction on dimension.
Therefore, we can find a basis f2,. . . , fn of that space with the required property. It remains to note that if we
take e1 = 1p|q(v)| v , then we have q(e1) = ±1, and also b(e1,ei ) = 0 for i > 1, which proves that our quadratic form

becomes a signed sum of squares in this basis.

Theorem 2 (Law of inertia). In the previous theorem, the triple (n+,n−,n0), where n± is the number of εi equal to
±1, and n0 is the number of εi equal to 0, does not depend on the choice of the basis f1, . . . , fn . This triple is often
referred to as the signature of the quadratic form q.

Proof. Suppose that we have a basis
e1, . . . ,en+ , f1, . . . , fn− , g1, . . . , gn0

which produces a system of coordinates where q becomes a signed sum of squares with n+ of εi are equal to 1, n−
of εi are equal to −1, and n0 of εi are equal to 0. Let us look at the corresponding symmetric bilinear form b. The
reconstruction formula b(v, w) = 1

2 (q(v +w)−q(v)−q(w)) implies that

b(x1e1 +·· ·+ zn0 gn0 , x ′
1e1 +·· ·+ z ′

n0
gn0 ) = x1x ′

1 +·· ·+xn+x ′
n+ − y1 y ′

1 −·· ·− yn− y ′
n− .

By definition, the kernel of a symmetric bilinear form is the space of all vectors v such that b(v, w) = 0 for all w ∈V .
We see that the kernel is defined by a system of equations b(v,ei ) = b(v, f j ) = b(v, gk ) = 0 for all i , j ,k, and by
direct inspection this system implies that v is a linear combination of the vectors gk . This implies that n0 is the
dimension of the kernel of b, and so is independent of any choices.

Suppose now that there are two different bases

e1, . . . ,en+ , f1, . . . , fn− , g1, . . . , gn0

1



and
e ′1, . . . ,en′+ , f ′

1, . . . , fn′− , g ′
1, . . . , g ′

n0

where q is a signed sum of squares, and n+ 6= n′+, so without loss of generality n+ > n′+. Note that this implies that
n− < n′−. Consider the vectors

e1, . . . ,en+ , f ′
1, . . . , f ′

n′−
, g1, . . . , gn0 .

The total number of those vectors exceeds the dimension of V , so they must be linearly dependent, that is

a1e1 +·· ·+an+en+ +b1 f ′
1 +·· ·+bn′− f ′

n′−
+ c1g1 +·· ·+cn0 gn0 = 0

for some scalars ai ,b j ,ck . Let us rewrite it as

a1e1 +·· ·+an+en+ + c1g1 +·· ·+cn0 gn0 =−(b1 f ′
1 +·· ·+bn′− f ′

n′−
),

and denote the vector to which both the left hand side and the right hand side are equal to by v . Then

a2
1 +·· ·+a2

n+ = q(v) =−b2
1 −·· ·−b2

n− ,

which implies
a1 = ·· · = an+ = b1 = ·· · = bn− = 0,

and substituting it into

a1e1 +·· ·+an+en+ +b1 f ′
1 +·· ·+bn′− f ′

n′−
+ c1g1 +·· ·+cn0 gn0 = 0

we get
c1g1 +·· ·+cn0 gn0 = 0,

implying of course c1 = ·· · = cn0 = 0, which altogether shows that these vectors cannot be linearly dependent, a
contradiction.
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