MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 17

Today we shall prove various theorems on quadratic forms stated without proof last week.

Theorem 1. Let q be a quadratic form on a vector space V. There exists a basis fi,..., fn of V for which the quadratic
form q becomes a signed sum of squares:
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where all numbers €; are either1 or —1 or 0.

Proof. Informally, the slogan behind the proof we shall present is “imitate the Gram-Schmidt procedure”. Let us
make it precise. We shall argue by induction on dim V, the basis of induction being dim V' = 0, when the basis is
empty, so there is nothing to prove.

Suppose dim V = n > 0. There are two cases to consider. First, it might be the case that g(v) = 0 for all v. In this
case, any basis would work, with €; = 0 for all i.

Otherwise, there exists a vector v such that g(v) # 0. Let us extend it to a basis e; = v, ey, ..., e;, and look at the
symmetric bilinear form b(v, w) = %(q(v + w) — g(v) — q(w)) associated to the quadratic form g. We claim that we
can change the basis ey, ..., e, into a basis e/, e}, ..., e, with €| = e; = v and b(e:., e})=0foralli=2,...,n. Indeed,

we can put e;. =e;— %el for i > 1; here division by b(e;, e1) is possible since b(ey,e1) = g(e1) = q(v) #0. We

can now consider the linear span of e, ..., e}, with the bilinear form ¢, and proceed by induction on dimension.

Therefore, we can find a basis f>,..., f; of that space with the required property. It remains to note that if we
1

take e = NIl v, then we have g(e;) = =1, and also b(e;, e;) = 0 for i > 1, which proves that our quadratic form
14
becomes a signed sum of squares in this basis. O

Theorem 2 (Law of inertia). In the previous theorem, the triple (n.,n_, ny), where ny is the number of €; equal to
+1, and ny is the number of €; equal to 0, does not depend on the choice of the basis fi,..., fn. This triple is often
referred to as the signature of the quadratic form q.

Proof. Suppose that we have a basis
el,---»enyfl»---»fn,»glv---»gno

which produces a system of coordinates where g becomes a signed sum of squares with n, of ¢; are equal to 1, n_
of ¢; are equal to —1, and ng of ¢; are equal to 0. Let us look at the corresponding symmetric bilinear form b. The
reconstruction formula b(v, w) = %(q(v + w) — g(v) — q(w)) implies that

/ ! / / ! /
b(x1e1+---+zn0gn0,x1e1+---+zn0gn0) =X XA X, Xy, — NIV~ Yl Y

By definition, the kernel of a symmetric bilinear form is the space of all vectors v such that b(v, w) =0forall we V.
We see that the kernel is defined by a system of equations b(v,e;) = b(v, f;) = b(v,gx) = 0 for all i, j, k, and by
direct inspection this system implies that v is a linear combination of the vectors gi. This implies that ny is the
dimension of the kernel of b, and so is independent of any choices.

Suppose now that there are two different bases

el)---)en+)f1)---rfn_rgly---»gng



and

! ! ! !
€lyeren s flreees 810 &y

where g is a signed sum of squares, and n, # n',, so without loss of generality n; > n/,. Note that this implies that
n_ < n’_. Consider the vectors

! !
el)--'ren.,_vfl;-'-vfn/_vglv--'ygn0~

The total number of those vectors exceeds the dimension of V, so they must be linearly dependent, that is

! !
arey+--+ap,en, +bifi+--+by f +a181++Cn8ny =0

for some scalars a;, bj, cx. Let us rewrite it as

! !
arey+---+an,en, +C181+ +Cny&ny =—b1fi+--+by f,),

and denote the vector to which both the left hand side and the right hand side are equal to by v. Then

which implies

and substituting it into

we get

implying of course c; =

contradiction.
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@+vdd =q)=—bi - =1,

alz...:an+:b1:...:bn_:0’

! !
aer+--+an.en, +bifi+-+by f +a181+ - +Cn8n =0

Clg1+"'+Cn0gn0 =0,

-+ = cp, = 0, which altogether shows that these vectors cannot be linearly dependent, a
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