MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 17

Today we shall prove various theorems on quadratic forms stated without proof last week.
Theorem 1. Let q be a quadratic form on a vector space V. There exists a basis f_{1}, \ldots, f_{n} of V for which the quadratic form q becomes a signed sum of squares:

$$
q\left(x_{1} f_{1}+\cdots+x_{n} f_{n}\right)=\sum_{i=1}^{n} \varepsilon_{i} x_{i}^{2}
$$

where all numbers ε_{i} are either 1 or -1 or 0.
Proof. Informally, the slogan behind the proof we shall present is "imitate the Gram-Schmidt procedure". Let us make it precise. We shall argue by induction on $\operatorname{dim} V$, the basis of induction being $\operatorname{dim} V=0$, when the basis is empty, so there is nothing to prove.

Suppose $\operatorname{dim} V=n>0$. There are two cases to consider. First, it might be the case that $q(v)=0$ for all v. In this case, any basis would work, with $\varepsilon_{i}=0$ for all i.

Otherwise, there exists a vector v such that $q(\nu) \neq 0$. Let us extend it to a basis $e_{1}=v, e_{2}, \ldots, e_{n}$, and look at the symmetric bilinear form $b(v, w)=\frac{1}{2}(q(\nu+w)-q(v)-q(w))$ associated to the quadratic form q. We claim that we can change the basis e_{1}, \ldots, e_{n} into a basis $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}$ with $e_{1}^{\prime}=e_{1}=v$ and $b\left(e_{i}^{\prime}, e_{1}^{\prime}\right)=0$ for all $i=2, \ldots, n$. Indeed, we can put $e_{i}^{\prime}=e_{i}-\frac{b\left(e_{i}, e_{1}\right)}{b\left(e_{1}, e_{1}\right)} e_{1}$ for $i>1$; here division by $b\left(e_{1}, e_{1}\right)$ is possible since $b\left(e_{1}, e_{1}\right)=q\left(e_{1}\right)=q(\nu) \neq 0$. We can now consider the linear span of $e_{2}^{\prime}, \ldots, e_{n}^{\prime}$ with the bilinear form q, and proceed by induction on dimension. Therefore, we can find a basis f_{2}, \ldots, f_{n} of that space with the required property. It remains to note that if we take $e_{1}=\frac{1}{\sqrt{|q(\nu)|}} v$, then we have $q\left(e_{1}\right)= \pm 1$, and also $b\left(e_{1}, e_{i}\right)=0$ for $i>1$, which proves that our quadratic form becomes a signed sum of squares in this basis.

Theorem 2 (Law of inertia). In the previous theorem, the triple $\left(n_{+}, n_{-}, n_{0}\right.$), where $n_{ \pm}$is the number of ε_{i} equal to ± 1, and n_{0} is the number of ε_{i} equal to 0 , does not depend on the choice of the basis f_{1}, \ldots, f_{n}. This triple is often referred to as the signature of the quadratic form q.

Proof. Suppose that we have a basis

$$
e_{1}, \ldots, e_{n_{+}}, f_{1}, \ldots, f_{n_{-}}, g_{1}, \ldots, g_{n_{0}}
$$

which produces a system of coordinates where q becomes a signed sum of squares with n_{+}of ε_{i} are equal to $1, n_{-}$ of ε_{i} are equal to -1 , and n_{0} of ε_{i} are equal to 0 . Let us look at the corresponding symmetric bilinear form b. The reconstruction formula $b(v, w)=\frac{1}{2}(q(v+w)-q(v)-q(w))$ implies that

$$
b\left(x_{1} e_{1}+\cdots+z_{n_{0}} g_{n_{0}}, x_{1}^{\prime} e_{1}+\cdots+z_{n_{0}}^{\prime} g_{n_{0}}\right)=x_{1} x_{1}^{\prime}+\cdots+x_{n_{+}} x_{n_{+}}^{\prime}-y_{1} y_{1}^{\prime}-\cdots-y_{n_{-}} y_{n_{-}}^{\prime} .
$$

By definition, the kernel of a symmetric bilinear form is the space of all vectors v such that $b(\nu, w)=0$ for all $w \in V$. We see that the kernel is defined by a system of equations $b\left(v, e_{i}\right)=b\left(v, f_{j}\right)=b\left(v, g_{k}\right)=0$ for all i, j, k, and by direct inspection this system implies that v is a linear combination of the vectors g_{k}. This implies that n_{0} is the dimension of the kernel of b, and so is independent of any choices.

Suppose now that there are two different bases

$$
e_{1}, \ldots, e_{n_{+}}, f_{1}, \ldots, f_{n_{-}}, g_{1}, \ldots, g_{n_{0}}
$$

and

$$
e_{1}^{\prime}, \ldots, e_{n_{+}^{\prime}}, f_{1}^{\prime}, \ldots, f_{n_{-}^{\prime}}, g_{1}^{\prime}, \ldots, g_{n_{0}}^{\prime}
$$

where q is a signed sum of squares, and $n_{+} \neq n_{+}^{\prime}$, so without loss of generality $n_{+}>n_{+}^{\prime}$. Note that this implies that $n_{-}<n_{-}^{\prime}$. Consider the vectors

$$
e_{1}, \ldots, e_{n_{+}}, f_{1}^{\prime}, \ldots, f_{n_{-}^{\prime}}^{\prime}, g_{1}, \ldots, g_{n_{0}}
$$

The total number of those vectors exceeds the dimension of V, so they must be linearly dependent, that is

$$
a_{1} e_{1}+\cdots+a_{n_{+}} e_{n_{+}}+b_{1} f_{1}^{\prime}+\cdots+b_{n_{-}^{\prime}} f_{n_{-}^{\prime}}^{\prime}+c_{1} g_{1}+\cdots+c_{n_{0}} g_{n_{0}}=0
$$

for some scalars a_{i}, b_{j}, c_{k}. Let us rewrite it as

$$
a_{1} e_{1}+\cdots+a_{n_{+}} e_{n_{+}}+c_{1} g_{1}+\cdots+c_{n_{0}} g_{n_{0}}=-\left(b_{1} f_{1}^{\prime}+\cdots+b_{n_{-}^{\prime}} f_{n_{-}^{\prime}}^{\prime}\right)
$$

and denote the vector to which both the left hand side and the right hand side are equal to by ν. Then

$$
a_{1}^{2}+\cdots+a_{n_{+}}^{2}=q(\nu)=-b_{1}^{2}-\cdots-b_{n_{-}}^{2},
$$

which implies

$$
a_{1}=\cdots=a_{n_{+}}=b_{1}=\cdots=b_{n_{-}}=0,
$$

and substituting it into

$$
a_{1} e_{1}+\cdots+a_{n_{+}} e_{n_{+}}+b_{1} f_{1}^{\prime}+\cdots+b_{n_{-}^{\prime}} f_{n_{-}^{\prime}}^{\prime}+c_{1} g_{1}+\cdots+c_{n_{0}} g_{n_{0}}=0
$$

we get

$$
c_{1} g_{1}+\cdots+c_{n_{0}} g_{n_{0}}=0
$$

implying of course $c_{1}=\cdots=c_{n_{0}}=0$, which altogether shows that these vectors cannot be linearly dependent, a contradiction.

