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Lecture 18

Suppose we are given a basis e1, . . . , en of a vector space V , and that b is a symmetric bilinear form on V .
Let us denote by B the matrix whose entries are b(ei ,e j ), and by Bk the top left corner submatrix of B . We put
∆k := det(Bk ) for 1 É k É n.

Theorem 1 (Jacobi theorem). Suppose that for all i = 1, . . . ,n we have ∆i 6= 0. Then there exists a basis f1, . . . , fn

where

q(x1 f1 +·· ·+xn fn) = 1

∆1
x2

1 +
∆1

∆2
x2

2 +·· ·+ ∆n−1

∆n
x2

n .

Proof. We shall look for a basis of the form

f1 =α11e1,

f2 =α12ve1 +α22e2,

. . . ,

fn =α1ne1 +α2ne2 +·· ·+αnnen .

If we write the conditions b( fi , f j ) = 0 for i 6= j directly, we shall obtain a system of quadratic equations in the
unknowns αi j , which is difficult to solve directly. For that reason, we shall use a clever shortcut.

Suppose that we found a basis of the form given above, for which

b( fi ,e j ) = 0 for j = 1, . . . , i −1.

We shall now verify that these conditions imply b( fi , f j ) = 0 for i 6= j . Indeed, for i > j we have

b( fi , f j ) = b( fi ,α1 j e1 +α2 j e2 + . . .+α j j e j ) =α1 j b( fi ,e1)+·· ·+α j j b( fi ,e j ) = 0,

and for i < j we have b( fi , f j ) = b( f j , fi ) = 0.
For a given i , the conditions

b( fi ,e j ) = 0 for j = 1, . . . , i −1

form a system of linear equations with i unknowns and i −1 equations, so there will inevitably be free unknowns.
To normalise the solution, let us also include the equation

b( fi ,ei ) = 1.

Then the corresponding system of equation becomes

b(e1,e1)α1i +b(e2,e1)α2i + . . .+b(ei ,e1)αi i = 0,

b(e1,e2)α1i +b(e2,e2)α2i + . . .+b(ei ,e2)αi i = 0,

. . .

b(e1,ei−1)α1i +b(e2,ei−1)α2i + . . .+b(ei ,ei−1)αi i = 0,

b(e1,ei )α1i +b(e2,ei )α2i + . . .+b(ei ,ei )αi i = 1.
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The matrix of the this system of equation is B T
i = Bi , so by our assumption this system has just one solution for

each i = 1, . . . ,n. This already ensures that under the constraints we imposed the basis f1, . . . , fn is unique, and
the matrix of the bilinear form b relative to this basis is diagonal. Let us compute the diagonal entries b( fi , fi ). We
have

b( fi , f j ) = b( fi ,α1 j e1 +α2 j e2 + . . .+αi i ei ) =α1 j b( fi ,e1)+·· ·+αi i b( fi ,ei ) =αi i .

To compute αi i , we use the Cramer’s rule for solving systems of linear equations. The last unknown is equal to the

ratio det(Bi i )
det(Bi ) , where Bi i is obtained by Bi by replacing the last column by the right hand side of the given system of

equations. Expanding that determinant along its rightmost column, we get αi i = ∆i−1
∆i

for i > 1, and α11 = 1
∆1

, as
required.

Note that the Jacobi theorem has this requirement that all∆i are nonzero, which heavily depends on the choice
of basis. Thus, it is not always applicable. However, there are some important instances where it is useful, including
the proof of the next result.

Sylvester’s criterion

Theorem 2 (Sylvester’s criterion). The given symmetric bilinear form is positive definite if and only if

∆k > 0 for all k = 1, . . . ,n.

Proof. Suppose that all ∆k are positive. Then in particular they are all non-zero, and we are in the situation of
Jacobi theorem, which immediately shows that b is positive definite, since q(v) = b(v, v) is represented by a sum of
squares of coordinates with positive coefficients.

Suppose that b is positive definite. Let us show that it is impossible to have ∆k = 0 for some k. Assume the
contrary. Then the homogeneous system of linear equations

b(e1,e1)x1 +b(e2,e1)x2 + . . .+b(ek ,e1)xk = 0,

b(e1,e2)x1 +b(e2,e2)x2 + . . .+b(ek ,e2)xk = 0,

. . .

b(e1,ek )x1 +b(e2,ek )x2 + . . .+b(ek ,ek )xk = 0

has a nontrivial solution. Let us take this solution c1, . . . ,ck , and consider the vector v = c1e1 +·· ·+ck ek . We have

b(v,ei ) = b(e1,ei )c1 +b(e2,ei )c2 + . . .+b(ek ,ei )ck = 0 for i = 1, . . . ,k.

Therefore,
b(v, v) = c1b(v,e1)+ c2b(v,e2)+·· ·+ck b(v,ek ) = 0,

which, coupled with positivity of b, implies c1 = ·· · = ck = 0, which is a contradiction. Therefore, all the determi-
nants ∆k are nonzero, and then the previous theorem implies that they must be positive, or else the expansion

q(x1 f1 +·· ·+xn fn) = 1

∆1
x2

1 +
∆1

∆2
x2

2 +·· ·+ ∆n−1

∆n
x2

n

has a negative coefficient, and so b cannot be positive definite.

A bilinear form b is said to be negative definite if b(v, v) < 0 for every nonzero vector v . From the Sylvester
criterion, we immediately deduce that b is negative definite if (−1)k∆k is positive for all k. Indeed, we look at the
form −b which must be positive; for this form the corresponding determinant is (−1)k∆k .

Our last step would be to prove a theorem relating linear transformations and bilinear forms. Suppose that B
is a real symmetric matrix representing a bilinear form b.

Theorem 3. All the eigenvalues of B are real numbers. Moreover, the signature of b is completely determined by
eigenvalues of B: the number n+ is the number of positive eigenvalues, the number n− is the number of negative
eigenvalues, and the number n0 is the number of zero eigenvalues.
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