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Lecture 2

Rank and nullity of a linear map

Last time we defined the notions of the kernel and the image of a linear map ϕ : V → W, as well as the
nullity and the rank, the dimensions of those subspaces. We shall now discuss how those dimensions are
related.

Theorem 1 (Rank-nullity theorem). Suppose that V and W are finite-dimensional vector spaces. For a
linear map ϕ : V → W, we have

rk(ϕ) + null(ϕ) = dim(V).

Proof. Let us choose a basis e1, . . . , en of V and f1, . . . , fm of W, and represent ϕ by the matrix A = Aϕ,e,f .
Since Ker(ϕ) consists of vectors v such that ϕ(v) = 0, we see that null(ϕ) is the dimension of the solution

space of the system Ax = 0, where x = ve. This dimension is equal to the number of free variables, that is
the number of non-pivotal columns of the reduced row echelon form.

Also, Im(ϕ) consists of all vectors of the form ϕ(v) with v ∈ V. Since each v can be written as
v = x1e1 + · · ·+ xnen, we can write ϕ(v) = x1ϕ(e1) + · · ·+ xnϕ(en), so the subspace Im(ϕ) is spanned by
ϕ(e1), . . . , ϕ(en). Columns of coordinates of these vectors are precisely the columns of the matrix A, by its
definition, so that — in terms of coordinates — Im(ϕ) becomes identified with the column space of A.

Let us now demonstrate that the column space of A and the column space of its reduced row echelon
form R have the same dimension. Indeed, R is obtained from A by row operations, so R = MA where M is
an invertible matrix. Recall that the rule for transforming the matrix of a linear map under change of basis
is Aϕ,e ′,f ′ = Mf ′,fAϕ,e,fMe,e ′ . This shows that multiplying A by an invertible matrix on the right merely
corresponds to a change of basis in W, and therefore R represents the same linear map ϕ but with respect
to a different basis. As a consequence, the column space of R can also be viewed as representing Im(ϕ) for
a certain coordinate system. The image of a linear map is coordinate-independent, so the dimension of the
column space of A is equal to the dimension of the column space of R and is equal to rk(ϕ).

For a reduced row echelon form matrix R, its columns with pivots are some of the standard unit vectors,
and all other columns are their linear combinations, so the dimension of the column space is equal to the
number of pivotal variables. Thus, rk(ϕ) is the number of pivotal variables, and null(ϕ) is the number of
free variables, so rk(ϕ) + null(ϕ) is the total number of variables, which is manifestly dim(V).

The proof we just discussed combines a lot of things we talked about in semester one. Most importantly,
it combines the more “practical” part (reduced row echelon forms, free variables, pivotal variables) with the
more “theoretical” part (dimension, change of basis). Following the logic of this argument is a good test of
fluency in the first semester material.

Let us now offer another proof of the same result; it is more theoretical and abstract, and is a toy model
for some more intricate proofs we shall see in the next few weeks.

Another proof of rank-nullity theorem. This other proof of the rank-nullity theorem will be useful
in some subsequent classes.

Let us consider U = Ker(ϕ); it is a subspace of V. Let us choose a basis e1, . . . , ek of U. We can extend
this basis to a basis of V by adjoining vectors f1, . . . , fl (if the linear span of e1,. . . , ek coincides with V, we
are done, else take for f1 a vector outside that linear span; then if the linear span of e1,. . . , ek, f1 coincides
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with V, we are done, else take for f2 a vector outside that linear span, etc.). In this set-up, the vectors f1,
. . . , fl are usually said to be a basis of V relative to the subspace U. We shall discuss this notion in detail
later.

Let us demonstrate that the vectors ϕ(f1), . . . , ϕ(fl) form a basis of Im(ϕ). First, take any vector v ∈ V.
We can express it via our basis: v = x1e1 + · · ·+ xkek + y1f1 + · · ·+ ylfl. Therefore,

ϕ(v) = ϕ(x1e1 + · · ·+ xkek + y1f1 + ylfl) = x1ϕ(e1) + · · ·+ xkϕ(ek) + y1ϕ(f1) + · · ·+ ylϕ(fl).

Since ei ∈ U, we have ϕ(ei) = 0, and so ϕ(v) = y1ϕ(f1) + · · · + ylϕ(fl), which means that the vectors
ϕ(f1), . . . , ϕ(fl) form a spanning set. Let us now show that they are linearly independent. Assume the
contrary: let

c1ϕ(f1) + · · ·+ clϕ(fl) = 0

for some scalars c1, . . . , cl. This immediately implies ϕ(c1f1 + · · ·+ clfl) = 0, so that c1f1 + · · ·+ clfl ∈ U.
But e1,. . . ,ek form a basis of U, and thus we can write

c1f1 + · · ·+ clfl = d1e1 + · · ·+ dkek,

contradicting the basis property of ei and fj taken together. Therefore, the vectors ϕ(f1), . . . , ϕ(fl) form
a basis of Im(ϕ), and we conclude that rk(ϕ) + null(ϕ) = l+ k = dim(V).

We conclude with the following remark.

Remark 1. Each of the two proofs we produced actually allows us to conclude a bit more: for every
linear map ϕ : V → W, there exist bases of V and W relative to which the matrix representing ϕ is(

Il 0(n−l)×l

0l×(m−l) 0(n−l)×(m−l)

)
, where 0a×b is the a×b-matrix whose all entries are equal to 0. Here l = rk(ϕ).

In the context of the first proof, we note that we are allowed to change bases in both the domain and the
codomain space ϕ (and hence do both elementary row and elementary column operations) without changing
the rank and the nullity; elementary column operations allow us to cancel all non-pivotal columns, and to
bring all pivotal columns to the left. In the context of the second proof, one should re-order the basis of V
found in that proof so that the vectors of the relative basis go first, and find the basis of W extending the
images of the relative basis vectors.
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