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Lecture 6

Several commuting linear transformations have a common eigenvector

Let us illustrate how invariant subspaces can help to reduce a problem to a “smaller” one. Two linear
transformations ϕ and ψ are said to commute if ϕ ◦ψ = ψ ◦ϕ, so that the result of consecutive application
of ϕ and ψ does not depend on the order in which they are applied.

Theorem 1. Any set of pairwise commuting transformations ϕi : V → V has a common eigenvector.

Before we proceed to the proof, let us make a remark on the meaning of this result. The mathematical
apparatus of Quantum Mechanics postulates that various physical quantities of particles (coordinates, mo-
menta, etc.) are linear transformations of a certain space (Hilbert Space); vectors in that space correspond to
different states of the given physical system. An eigenvector corresponds to a “pure” state where the quantity
is exactly measurable, and any state is a mixture of pure states with various probabilities. Our result shows
that commuting transformations correspond to quantities that can be exactly measured simultaneously. One
of the famous examples in Quantum Mechanics is the Uncertainly Principle that claims that coordinates
and momenta cannot be exactly measured simultaneously; this corresponds to the fact that certain linear
transformations do not commute.

Proof. We shall prove it by induction on dim(V). If dim(V) = 1, then any basis vector of V is a common
eigenvector for these operators. Assume the statement is proved for dim(V) = k. Let us prove it for
dim(V) = k + 1. If all the operators ϕi are scalar multiples of the identity map, that is there exist scalars
ci such that for all v and all i we have ϕi(v) = ci · v, then every non-zero vector is a common eigenvector
of these transformations. Suppose that for some i the operator ϕi is not a scalar multiple of the identity
map. Let us consider some eigenvalue λ of ϕi, and consider the solution space to the system of equations
ϕi(v) = λ · v. This solution space is a subspace W with 0 < dim(W) < dim(V). Let us note that W is an
invariant subspace of all our transformations: if w ∈W, and w ′ = ϕk(w), we have

ϕi(w
′) = ϕi(ϕk(w)) = ϕk(ϕi(w)) = ϕk(λ ·w) = λϕk(w) = λ ·w ′,

so w ′ ∈W. By induction, there is a common eigenvector in W, as required.

Case ϕ2 = ϕ

Let us assume that a linear transformation ϕ satisfies the equation ϕ2 = ϕ, so that for every vector v, we
have ϕ(ϕ(v)) = ϕ(v). Note that this implies that all eigenvalues of ϕ are equal to 0 and 1: if ϕ(v) = λv,
then ϕ(ϕ(v)) = ϕ(λv) = λϕ(v) = λ2v, and we see that λ2 = λ. Therefore, such a linear transformation
usually does not have distinct eigenvalues. Nevertheless, we shall see that it is always possible to find a basis
where the matrix of ϕ is diagonal.

Lemma 1. If ϕ2 = ϕ, then Im(ϕ) ∩ ker(ϕ) = {0}.

Proof. Indeed, if v ∈ Im(ϕ)∩ker(ϕ), then v = ϕ(w) for some w, and 0 = ϕ(w) = ϕ(ϕ(w)) = ϕ(w) = v.

Note that from this proof it is also clear that if v ∈ Im(ϕ), then ϕ(v) = v.
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Lemma 2. If ϕ2 = ϕ, then V = Im(ϕ)⊕ ker(ϕ).

Proof. Indeed,

dim(Im(ϕ) + ker(ϕ)) = dim Im(ϕ) + dim ker(ϕ) − dim(Im(ϕ) ∩ ker(ϕ)) = rk(ϕ) + null(ϕ) = dim(V),

so the sum is a subspace of V of dimension equal to the dimension of V, that is V itself. Also, we already
checked that the intersection is equal to 0, so the sum is direct.

Consequently, if we take a basis of ker(ϕ), and a basis of Im(ϕ), and join them together, we get a basis

of V with respect to which the matrix of ϕ is the diagonal matrix

(
0 0
0 Im

)
, where m = rk(ϕ).

Case ϕ2 = 0

However nice the approach from the previous section seems, sometimes it does not work that well. Though
we always have

dim Im(ϕ) + dim ker(ϕ) = dim(V),

the sum of these subspaces is not always direct, as the following example shows. If we know that ϕ2 = 0,
that is ϕ(ϕ(v)) = 0 for every v ∈ V, that implies Im(ϕ) ⊂ ker(ϕ), so Im(ϕ) + ker(ϕ) = ker(ϕ). Let us
discuss a way to handle this case, it will be very informative for our future results. We begin with a general
definition which will be useful for packaging various constructions we shall use.

We start by picking a basis e1, . . . , ek of V relative to ker(ϕ). Note thatϕ(e1), . . . , ϕ(ek) ∈ Im(ϕ) ⊂ ker(ϕ).
Let us pick a basis f1, . . . , fl of ker(ϕ) relative to span(ϕ(e1), . . . , ϕ(ek)). Let us show that the vectors

ϕ(e1), . . . , ϕ(ek), f1, . . . , fl

are linearly independent (and hence form a basis of ker(ϕ)). Suppose that

b1ϕ(e1) + · · ·+ bkϕ(ek) + c1f1 + · · ·+ clfl = 0.

Since f1, . . . , fl is a relative basis, we conclude that c1, . . . , cl are all equal to zero. Therefore,

b1ϕ(e1) + · · ·+ bkϕ(ek) = ϕ(b1e1 + · · ·+ bkek) = 0,

so b1e1 + · · ·+ bkek ∈ ker(ϕ). Since these vectors form a relative basis, we conclude that b1, . . . , bk are all
equal to zero.

Thus
ϕ(e1), . . . , ϕ(ek), f1, . . . , fl

form a basis of ker(ϕ), which immediately implies that the vectors

e1, . . . , ek, ϕ(e1), . . . , ϕ(ek), f1, . . . , fl

form a basis of V.
Reordering this basis, we obtain a basis

e1, ϕ(e1), . . . , ek, ϕ(ek), f1, . . . , fl,

relative to which the matrix of ϕ has a block diagonal form with k blocks

(
0 0
1 0

)
on the diagonal, and all

the other entries equal to zero.
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