MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 9

Case of a general linear transformation

Now, suppose that ϕ is an arbitrary linear transformation of V (no assumption $\phi^k=0$ anymore). Let us nevertheless consider the sequence of subspaces $N_1=\ker(\phi),\,N_2=\ker(\phi^2),\,\ldots,\,N_m=\ker(\phi^m),\,\ldots$

Note that this sequence is increasing:

$$N_1 \subset N_2 \subset \ldots N_m \subset \ldots$$

Indeed, if $\nu \in N_s$, that is $\phi^s(\nu) = 0$, then we have $\phi^{s+1}(\nu) = \phi(\phi^s(\nu)) = 0$.

Since we only work with finite-dimensional vector spaces, this sequence of subspaces cannot be strictly increasing; if $N_i \neq N_{i+1}$, then, obviously, dim $N_{i+1} \ge 1 + \dim N_i$. It follows that for some k we have $N_k = N_{k+1}$.

Lemma 1. In this case we have $N_{k+l} = N_k$ for all l > 0.

Proof. We shall prove that $N_{k+l} = N_{k+l-1}$ by induction on l. The induction basis (case l = 1) follows immediately from our notation. Suppose that $N_{k+l} = N_{k+l-1}$; let us prove that $N_{k+l+1} = N_{k+l}$. Let us take a vector $v \in N_{k+l+1}$, so $\varphi^{k+l+1}(v) = 0$. We have $\varphi^{k+l+1}(v) = \varphi^{k+l}(\varphi(v))$, so $\varphi(v) \in N_{k+l}$. But by the induction hypothesis $N_{k+l} = N_{k+l-1}$, so $\varphi^{k+l-1}(\varphi(v)) = 0$, or $\varphi^{k+l}(v) = 0$, so $v \in N_{k+l}$, as required. \Box

Lemma 2. For the index k that we found, we have $V = \ker(\varphi^k) \oplus \operatorname{Im}(\varphi^k)$.

Proof. Let us first show that $\ker(\varphi^k) \cap \operatorname{Im}(\varphi^k) = \{0\}$. Indeed, suppose that $\nu \in \ker(\varphi^k) \cap \operatorname{Im}(\varphi^k)$. This means that $\varphi^k(\nu) = 0$ and that $\nu = \varphi^k(w)$ for some vector w. It follows that $\varphi^{2k}(w) = 0$, so $w \in N_{2k}$. But from the previous lemma we know that $N_{2k} = N_k$, so $w \in N_k$. Thus, $\nu = \varphi^k(w) = 0$, which is what we claimed.

Now we consider the sum of these two subspaces which we just proved to be direct. It is a subspace of V of dimension dim ker(ϕ^k) + dim Im(ϕ^k) = dim(V), so it has to coincide with V.

Note that the result we just proved explains the difference between the case $\varphi^2 = \varphi$ and $\varphi^2 = 0$. In the case $\varphi^2 = \varphi$ we of course have $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\varphi^2)$, so $V = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$, while in the case $\varphi^2 = 0$, usually $\operatorname{Ker}(\varphi) \neq \operatorname{Ker}(\varphi^2)$ but $\operatorname{Ker}(\varphi^2) = \operatorname{Ker}(\varphi^3)$ always, so we cannot expect that $V = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$, but we only have the trivial decomposition $V = V \oplus 0 = \operatorname{Ker}(\varphi^2) \oplus \operatorname{Im}(\varphi^2)$.

Lemma 3. For the index k that we found,

- 1. both $\operatorname{Ker}(\varphi^k)$ and $\operatorname{Im}(\varphi^k)$ are invariant subspaces of φ ,
- 2. on the first subspace, the linear transformation ϕ has just the zero eigenvalue,
- 3. on the second subspace, all eigenvalues of ϕ are different from zero.

Proof. 1. The invariance is straightforward: if $\nu \in \text{Ker}(\varphi^k)$, so that $\varphi^k(\nu) = 0$, then of course

$$\varphi^{k}(\varphi(\nu)) = \varphi^{k+1}(\nu) = 0,$$

so $\varphi(\nu) \in \operatorname{Ker}(\varphi^k)$, and similarly, if $\nu \in \operatorname{Im}(\varphi^k)$, so that $\nu = \varphi^k(w)$, then of course

$$\varphi(v) = \varphi(\varphi^{k}(w)) = \varphi^{k+1}(w) = \varphi^{k}(\varphi(w)),$$

so $\varphi(\nu) \in \operatorname{Im}(\varphi^k)$.

2. If $\varphi(\nu) = \mu \nu$ for some $0 \neq \nu \in \text{Ker}(\varphi^k)$, then $0 = \varphi^k(\nu) = \mu^k \nu$, so $\mu = 0$.

3. If $\varphi(\nu) = 0$ for some $0 \neq \nu \in \operatorname{Im}(\varphi^k)$, then $\varphi^k(\nu) = 0$, but we know that $\operatorname{Im}(\varphi^k) \cap \operatorname{Ker}(\varphi^k) = \{0\}$, which is a contradiction.

We shall conclude the proof by induction, using the results we obtained. The induction parameter would be slightly unconventional: the number of distinct eigenvalues of φ . Our strategy would be to decompose V into a direct sum of invariant subspaces for each of which φ has only one eigenvalue, proving the following result.

Theorem 1. For every linear transformation $\varphi \colon V \to V$ whose (different) eigenvalues are $\lambda_1, \ldots, \lambda_k$, there exist invariant subspaces U_1, \ldots, U_k such that on each subspace U_i the only eigenvalue of φ is λ_i , and

$$V = U_1 \oplus U_2 \oplus \cdots \oplus U_k.$$

Proof. We shall prove this result by induction on the number of distinct eigenvalues of φ .

Let us consider the transformation $\varphi_{\lambda_1} = \varphi - \lambda_1 I$. Considering kernels of its powers, we find the first place k_1 where they stabilise, so that $\operatorname{Ker}(\varphi_{\lambda_1}^{k_1}) = \operatorname{Ker}(\varphi_{\lambda_1}^{k_1+1}) = \dots$

Note that the subspaces $\operatorname{Ker}(\varphi_{\lambda_1}^{k_1})$ and $\operatorname{Im}(\varphi_{\lambda_1}^{k_1})$ are invariant subspaces of φ . (Indeed, we already know that these are invariant subspaces of φ_{λ_1} , and $\varphi = \varphi_{\lambda_1} + \lambda_1 I$). Note also that we have $V = \operatorname{Ker}(\varphi_{\lambda_1}^{k_1}) \oplus \operatorname{Im}(\varphi_{\lambda_1}^{k_1})$.

On the invariant subspace $\operatorname{Ker}(\varphi_{\lambda_1}^{k_1})$, the transformation φ_{λ_1} has only the eigenvalue 0, so $\varphi = \varphi_{\lambda_1} + \lambda_1 I$ has only the eigenvalue λ_1 . Also, on the invariant subspace $\operatorname{Im}(\varphi_{\lambda_1}^{k_1})$, φ_{λ_1} has no zero eigenvalues, hence φ has no eigenvalues equal to λ_1 . Hence, we may put $U_1 := \operatorname{Ker}(\varphi_{\lambda_1}^k)$ and then apply the induction hypothesis to the linear transformation φ on the subspace $V' = \operatorname{Im}(\varphi_{\lambda_1}^k)$ where it has fewer eigenvalues.

Let us remark that the claim that the eigenvalues of φ on the subspace $V' = \operatorname{Im}(\varphi_{\lambda_1}^k)$ will be $\lambda_2, \ldots, \lambda_k$. This follows from the fact that if $V = V_1 \oplus V_2$ is a decomposition of V into a sum of two invariant subspaces, the characteristic polynomial of φ on V is the product of the characteristic polynomials on V_1 and V_2 : the determinant of a block matrix is equal to the product of determinant of blocks.