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Lecture 9

Case of a general linear transformation

Now, suppose that ¢ is an arbitrary linear transformation of V (no assumption @* = 0 anymore). Let us
nevertheless consider the sequence of subspaces N7 = ker(@), N2 = ker(@?), ..., Njp = ker(e™), ....
Note that this sequence is increasing:

N;CNyC...Nq, C...

Indeed, if v € Ny, that is @°(v) = 0, then we have @31 (v) = @(@%(v)) = 0.
Since we only work with finite-dimensional vector spaces, this sequence of subspaces cannot be strictly

increasing; if Ny # Niyq, then, obviously, dimN;;; > 14 dim Nj. It follows that for some k we have
Ny = Ny41.

Lemma 1. In this case we have Ny 1 = Ny for all 1 > 0.

Proof. We shall prove that Ny41 = Nyi1—1 by induction on 1. The induction basis (case | = 1) follows
immediately from our notation. Suppose that Ny, = Nyi1-1; let us prove that Ny 147 = Nyi1. Let us
take a vector v € Ny 141, s0 @1 (v) = 0. We have 11 (v) = *F(@(Vv)), so @(v) € Ny41. But by the
induction hypothesis Ny 1 = Ni1-1, s0 @1 (@(v)) =0, or @**(v) =0, so v € Ny, as required. [J

Lemma 2. For the index k that we found, we have V = ker(@*) @ Im(p¥).

Proof. Let us first show that ker(@*) N Im(¢@*) = {0}. Indeed, suppose that v € ker(¢*) N Im(@*). This
means that @*(v) = 0 and that v = @*(w) for some vector w. It follows that @?*(w) =0, so w € Ny. But

from the previous lemma we know that Ny = Ny, so w € Ny. Thus, v = @*(w) = 0, which is what we
claimed.

Now we consider the sum of these two subspaces which we just proved to be direct. It is a subspace of
V of dimension dim ker(¢*) + dimIm(¢@¥) = dim(V), so it has to coincide with V. O

Note that the result we just proved explains the difference between the case @? = @ and @? = 0. In
the case @2 = ¢ we of course have Ker(¢p) = Ker(¢@?), so V = Ker(@) @ Im(¢), while in the case @? = 0,
usually Ker(¢) # Ker(@?) but Ker(@?) = Ker(¢?) always, so we cannot expect that V = Ker(¢) @ Im(¢),
but we only have the trivial decomposition V =V @& 0 = Ker(¢@?) ® Im(p?).

Lemma 3. For the index k that we found,

1. both Ker(@*) and Im(¢@¥) are invariant subspaces of @,
2. on the first subspace, the linear transformation @ has just the zero eigenvalue,
3. on the second subspace, all eigenvalues of @ are different from zero.

Proof. 1. The invariance is straightforward: if v € Ker(¢*), so that @*(v) =0, then of course

P (e(v) = @ (v) =0,



so @(v) € Ker(¢*), and similarly, if v € Im(¢@¥), so that v = @*(w), then of course

e(v) = p(@ W) = 9T (W) = e*(p(w)),

so @(v) € Im(@*).

2. If @(v) = v for some 0 # v € Ker(@*), then 0 = @*(v) = p*v, so u = 0.

3. If @(v) =0 for some 0 # v € Im(@*), then @*(v) = 0, but we know that Im(@*) N Ker(¢@*) = {0},
which is a contradiction. O

We shall conclude the proof by induction, using the results we obtained. The induction parameter would
be slightly unconventional: the number of distinct eigenvalues of @. Our strategy would be to decompose V
into a direct sum of invariant subspaces for each of which ¢ has only one eigenvalue, proving the following
result.

Theorem 1. For every linear transformation @: V — V whose (different) eigenvalues are Ay, ..., A, there
exist invariant subsspaces Uy, ..., Uy such that on each subspace U; the only eigenvalue of @ is Ay, and

V=W oU & - & Uxk.

Proof. We shall prove this result by induction on the number of distinct eigenvalues of .
Let us consider the transformation @, = @ — A11. Considering kernels of its powers, we find the first

place k1 where they stabilise, so that Ker(cp}f] ) = Ker(cp}f] h=_..

Note that the subspaces Ker((p])f: ) and Im((pk] ) are invariant subspaces of . (Indeed, we al-
ready know that these are invariant subspaces of @a,, and @ = @a, + AI). Note also that we have
V =Ker(p)!) & Im(@)!).

On the invariant subspace Ker((p;f: ), the transformation @,, has only the eigenvalue 0, so @ = @i, + A1
has only the eigenvalue Ay. Also, on the invariant subspace Im((p])f; ), ®a, has no zero eigenvalues, hence @
has no eigenvalues equal to A;. Hence, we may put U; := Ker((‘o]}f1 ) and then apply the induction hypothesis
to the linear transformation ¢ on the subspace V/ = Im((p‘)f] ) where it has fewer eigenvalues.

Let us remark that the claim that the eigenvalues of @ on the subspace V’ = Im((p}f] ) will be Az, ..., Ak.
This follows from the fact that if V = V; @V, is a decomposition of V into a sum of two invariant subspaces,
the characteristic polynomial of @ on V is the product of the characteristic polynomials on V7 and V;: the
determinant of a block matrix is equal to the product of determinant of blocks. O



