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Case of a general linear transformation

Now, suppose that ϕ is an arbitrary linear transformation of V (no assumption ϕk = 0 anymore). Let us
nevertheless consider the sequence of subspaces N1 = ker(ϕ), N2 = ker(ϕ2), . . . , Nm = ker(ϕm), . . . .

Note that this sequence is increasing:

N1 ⊂ N2 ⊂ . . . Nm ⊂ . . .

Indeed, if v ∈ Ns, that is ϕs(v) = 0, then we have ϕs+1(v) = ϕ(ϕs(v)) = 0.
Since we only work with finite-dimensional vector spaces, this sequence of subspaces cannot be strictly

increasing; if Ni 6= Ni+1, then, obviously, dimNi+1 > 1 + dimNi. It follows that for some k we have
Nk = Nk+1.

Lemma 1. In this case we have Nk+l = Nk for all l > 0.

Proof. We shall prove that Nk+l = Nk+l−1 by induction on l. The induction basis (case l = 1) follows
immediately from our notation. Suppose that Nk+l = Nk+l−1; let us prove that Nk+l+1 = Nk+l. Let us
take a vector v ∈ Nk+l+1, so ϕk+l+1(v) = 0. We have ϕk+l+1(v) = ϕk+l(ϕ(v)), so ϕ(v) ∈ Nk+l. But by the
induction hypothesis Nk+l = Nk+l−1, so ϕk+l−1(ϕ(v)) = 0, or ϕk+l(v) = 0, so v ∈ Nk+l, as required.

Lemma 2. For the index k that we found, we have V = ker(ϕk)⊕ Im(ϕk).

Proof. Let us first show that ker(ϕk) ∩ Im(ϕk) = {0}. Indeed, suppose that v ∈ ker(ϕk) ∩ Im(ϕk). This
means that ϕk(v) = 0 and that v = ϕk(w) for some vector w. It follows that ϕ2k(w) = 0, so w ∈ N2k. But
from the previous lemma we know that N2k = Nk, so w ∈ Nk. Thus, v = ϕk(w) = 0, which is what we
claimed.

Now we consider the sum of these two subspaces which we just proved to be direct. It is a subspace of
V of dimension dim ker(ϕk) + dim Im(ϕk) = dim(V), so it has to coincide with V.

Note that the result we just proved explains the difference between the case ϕ2 = ϕ and ϕ2 = 0. In
the case ϕ2 = ϕ we of course have Ker(ϕ) = Ker(ϕ2), so V = Ker(ϕ) ⊕ Im(ϕ), while in the case ϕ2 = 0,
usually Ker(ϕ) 6= Ker(ϕ2) but Ker(ϕ2) = Ker(ϕ3) always, so we cannot expect that V = Ker(ϕ)⊕ Im(ϕ),
but we only have the trivial decomposition V = V ⊕ 0 = Ker(ϕ2)⊕ Im(ϕ2).

Lemma 3. For the index k that we found,

1. both Ker(ϕk) and Im(ϕk) are invariant subspaces of ϕ,
2. on the first subspace, the linear transformation ϕ has just the zero eigenvalue,
3. on the second subspace, all eigenvalues of ϕ are different from zero.

Proof. 1. The invariance is straightforward: if v ∈ Ker(ϕk), so that ϕk(v) = 0, then of course

ϕk(ϕ(v)) = ϕk+1(v) = 0,
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so ϕ(v) ∈ Ker(ϕk), and similarly, if v ∈ Im(ϕk), so that v = ϕk(w), then of course

ϕ(v) = ϕ(ϕk(w)) = ϕk+1(w) = ϕk(ϕ(w)),

so ϕ(v) ∈ Im(ϕk).
2. If ϕ(v) = µv for some 0 6= v ∈ Ker(ϕk), then 0 = ϕk(v) = µkv, so µ = 0.
3. If ϕ(v) = 0 for some 0 6= v ∈ Im(ϕk), then ϕk(v) = 0, but we know that Im(ϕk) ∩ Ker(ϕk) = {0},

which is a contradiction.

We shall conclude the proof by induction, using the results we obtained. The induction parameter would
be slightly unconventional: the number of distinct eigenvalues of ϕ. Our strategy would be to decompose V
into a direct sum of invariant subspaces for each of which ϕ has only one eigenvalue, proving the following
result.

Theorem 1. For every linear transformation ϕ : V → V whose (different) eigenvalues are λ1, . . . , λk, there
exist invariant subsspaces U1, . . . , Uk such that on each subspace Ui the only eigenvalue of ϕ is λi, and

V = U1 ⊕U2 ⊕ · · · ⊕Uk.

Proof. We shall prove this result by induction on the number of distinct eigenvalues of ϕ.
Let us consider the transformation ϕλ1 = ϕ − λ1I. Considering kernels of its powers, we find the first

place k1 where they stabilise, so that Ker(ϕk1

λ1
) = Ker(ϕk1+1

λ1
) = . . ..

Note that the subspaces Ker(ϕk1

λ1
) and Im(ϕk1

λ1
) are invariant subspaces of ϕ. (Indeed, we al-

ready know that these are invariant subspaces of ϕλ1 , and ϕ = ϕλ1 + λ1I). Note also that we have
V = Ker(ϕk1

λ1
)⊕ Im(ϕk1

λ1
).

On the invariant subspace Ker(ϕk1

λ1
), the transformation ϕλ1 has only the eigenvalue 0, so ϕ = ϕλ1 +λ1I

has only the eigenvalue λ1. Also, on the invariant subspace Im(ϕk1

λ1
), ϕλ1 has no zero eigenvalues, hence ϕ

has no eigenvalues equal to λ1. Hence, we may put U1 := Ker(ϕkλ1) and then apply the induction hypothesis

to the linear transformation ϕ on the subspace V ′ = Im(ϕkλ1) where it has fewer eigenvalues.

Let us remark that the claim that the eigenvalues of ϕ on the subspace V ′ = Im(ϕkλ1) will be λ2, . . . , λk.
This follows from the fact that if V = V1⊕V2 is a decomposition of V into a sum of two invariant subspaces,
the characteristic polynomial of ϕ on V is the product of the characteristic polynomials on V1 and V2: the
determinant of a block matrix is equal to the product of determinant of blocks.

2


