MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 9

Case of a general linear transformation

Now, suppose that φ is an arbitrary linear transformation of V (no assumption $\varphi^{k}=0$ anymore). Let us nevertheless consider the sequence of subspaces $\mathrm{N}_{1}=\operatorname{ker}(\varphi), \mathrm{N}_{2}=\operatorname{ker}\left(\varphi^{2}\right), \ldots, \mathrm{N}_{\mathrm{m}}=\operatorname{ker}\left(\varphi^{m}\right), \ldots$.

Note that this sequence is increasing:

$$
\mathrm{N}_{1} \subset \mathrm{~N}_{2} \subset \ldots \mathrm{~N}_{\mathrm{m}} \subset \ldots
$$

Indeed, if $v \in \mathrm{~N}_{s}$, that is $\varphi^{s}(v)=0$, then we have $\varphi^{s+1}(v)=\varphi\left(\varphi^{s}(v)\right)=0$.
Since we only work with finite-dimensional vector spaces, this sequence of subspaces cannot be strictly increasing; if $N_{i} \neq N_{i+1}$, then, obviously, $\operatorname{dim} N_{i+1} \geqslant 1+\operatorname{dim} N_{i}$. It follows that for some k we have $\mathrm{N}_{\mathrm{k}}=\mathrm{N}_{\mathrm{k}+1}$.

Lemma 1. In this case we have $\mathrm{N}_{\mathrm{k}+\mathrm{l}}=\mathrm{N}_{\mathrm{k}}$ for all $\mathrm{l}>0$.
Proof. We shall prove that $\mathrm{N}_{\mathrm{k}+\mathrm{l}}=\mathrm{N}_{\mathrm{k}+\mathrm{l}-1}$ by induction on l . The induction basis (case $\mathrm{l}=1$) follows immediately from our notation. Suppose that $\mathrm{N}_{\mathrm{k}+\mathrm{l}}=\mathrm{N}_{\mathrm{k}+\mathrm{l}-1}$; let us prove that $\mathrm{N}_{\mathrm{k}+\mathrm{l}+1}=\mathrm{N}_{\mathrm{k}+\mathrm{l}}$. Let us take a vector $v \in \mathrm{~N}_{\mathrm{k}+l+1}$, so $\varphi^{\mathrm{k}+l+1}(v)=0$. We have $\varphi^{\mathrm{k}+l+1}(v)=\varphi^{k+l}(\varphi(v))$, so $\varphi(v) \in \mathrm{N}_{\mathrm{k}+\mathrm{l}}$. But by the induction hypothesis $\mathrm{N}_{\mathrm{k}+\mathrm{l}}=\mathrm{N}_{\mathrm{k}+\mathrm{l}-1}$, so $\varphi^{\mathrm{k}+\mathrm{l}-1}(\varphi(v))=0$, or $\varphi^{\mathrm{k}+\mathrm{l}}(v)=0$, so $\nu \in \mathrm{N}_{\mathrm{k}+\mathrm{l}}$, as required.
Lemma 2. For the index k that we found, we have $\mathrm{V}=\operatorname{ker}\left(\varphi^{\mathrm{k}}\right) \oplus \operatorname{Im}\left(\varphi^{\mathrm{k}}\right)$.
Proof. Let us first show that $\operatorname{ker}\left(\varphi^{k}\right) \cap \operatorname{Im}\left(\varphi^{k}\right)=\{0\}$. Indeed, suppose that $\nu \in \operatorname{ker}\left(\varphi^{k}\right) \cap \operatorname{Im}\left(\varphi^{k}\right)$. This means that $\varphi^{k}(v)=0$ and that $v=\varphi^{k}(w)$ for some vector w. It follows that $\varphi^{2 k}(w)=0$, so $w \in \mathrm{~N}_{2 k}$. But from the previous lemma we know that $\mathrm{N}_{2 \mathrm{k}}=\mathrm{N}_{\mathrm{k}}$, so $w \in \mathrm{~N}_{\mathrm{k}}$. Thus, $v=\varphi^{\mathrm{k}}(w)=0$, which is what we claimed.

Now we consider the sum of these two subspaces which we just proved to be direct. It is a subspace of V of $\operatorname{dimension} \operatorname{dim} \operatorname{ker}\left(\varphi^{\mathrm{k}}\right)+\operatorname{dim} \operatorname{Im}\left(\varphi^{\mathrm{k}}\right)=\operatorname{dim}(\mathrm{V})$, so it has to coincide with V .

Note that the result we just proved explains the difference between the case $\varphi^{2}=\varphi$ and $\varphi^{2}=0$. In the case $\varphi^{2}=\varphi$ we of course have $\operatorname{Ker}(\varphi)=\operatorname{Ker}\left(\varphi^{2}\right)$, so $\mathrm{V}=\operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$, while in the case $\varphi^{2}=0$, usually $\operatorname{Ker}(\varphi) \neq \operatorname{Ker}\left(\varphi^{2}\right)$ but $\operatorname{Ker}\left(\varphi^{2}\right)=\operatorname{Ker}\left(\varphi^{3}\right)$ always, so we cannot expect that $V=\operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$, but we only have the trivial decomposition $\mathrm{V}=\mathrm{V} \oplus 0=\operatorname{Ker}\left(\varphi^{2}\right) \oplus \operatorname{Im}\left(\varphi^{2}\right)$.

Lemma 3. For the index k that we found,

1. both $\operatorname{Ker}\left(\varphi^{\mathrm{k}}\right)$ and $\operatorname{Im}\left(\varphi^{\mathrm{k}}\right)$ are invariant subspaces of φ,
2. on the first subspace, the linear transformation φ has just the zero eigenvalue,
3. on the second subspace, all eigenvalues of φ are different from zero.

Proof. 1. The invariance is straightforward: if $v \in \operatorname{Ker}\left(\varphi^{k}\right)$, so that $\varphi^{k}(v)=0$, then of course

$$
\varphi^{\mathrm{k}}(\varphi(v))=\varphi^{\mathrm{k}+1}(v)=0
$$

so $\varphi(v) \in \operatorname{Ker}\left(\varphi^{k}\right)$, and similarly, if $v \in \operatorname{Im}\left(\varphi^{k}\right)$, so that $v=\varphi^{k}(w)$, then of course

$$
\varphi(v)=\varphi\left(\varphi^{\mathrm{k}}(w)\right)=\varphi^{\mathrm{k}+1}(w)=\varphi^{\mathrm{k}}(\varphi(w))
$$

so $\varphi(v) \in \operatorname{Im}\left(\varphi^{k}\right)$.
2. If $\varphi(v)=\mu \nu$ for some $0 \neq v \in \operatorname{Ker}\left(\varphi^{k}\right)$, then $0=\varphi^{k}(v)=\mu^{k} v$, so $\mu=0$.
3. If $\varphi(v)=0$ for some $0 \neq v \in \operatorname{Im}\left(\varphi^{k}\right)$, then $\varphi^{k}(\nu)=0$, but we know that $\operatorname{Im}\left(\varphi^{k}\right) \cap \operatorname{Ker}\left(\varphi^{k}\right)=\{0\}$, which is a contradiction.

We shall conclude the proof by induction, using the results we obtained. The induction parameter would be slightly unconventional: the number of distinct eigenvalues of φ. Our strategy would be to decompose V into a direct sum of invariant subspaces for each of which φ has only one eigenvalue, proving the following result.

Theorem 1. For every linear transformation $\varphi: V \rightarrow \mathrm{~V}$ whose (different) eigenvalues are $\lambda_{1}, \ldots, \lambda_{k}$, there exist invariant subsspaces $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{k}}$ such that on each subspace U_{i} the only eigenvalue of φ is λ_{i}, and

$$
\mathrm{V}=\mathrm{U}_{1} \oplus \mathrm{U}_{2} \oplus \cdots \oplus \mathrm{U}_{\mathrm{k}}
$$

Proof. We shall prove this result by induction on the number of distinct eigenvalues of φ.
Let us consider the transformation $\varphi_{\lambda_{1}}=\varphi-\lambda_{1} I$. Considering kernels of its powers, we find the first place k_{1} where they stabilise, so that $\operatorname{Ker}\left(\varphi_{\lambda_{1}}^{\mathrm{k}_{1}}\right)=\operatorname{Ker}\left(\varphi_{\lambda_{1}}^{\mathrm{k}_{1}+1}\right)=\ldots$.

Note that the subspaces $\operatorname{Ker}\left(\varphi_{\lambda_{1}}^{\mathrm{k}_{1}}\right)$ and $\operatorname{Im}\left(\varphi_{\lambda_{1}}^{\mathrm{k}_{1}}\right)$ are invariant subspaces of φ. (Indeed, we already know that these are invariant subspaces of $\varphi_{\lambda_{1}}$, and $\varphi=\varphi_{\lambda_{1}}+\lambda_{1} \mathrm{I}$). Note also that we have $\mathrm{V}=\operatorname{Ker}\left(\varphi_{\lambda_{1}}^{\mathrm{k}_{1}}\right) \oplus \operatorname{Im}\left(\varphi_{\lambda_{1}}^{\mathrm{k}_{1}}\right)$.

On the invariant subspace $\operatorname{Ker}\left(\varphi_{\lambda_{1}}^{k_{1}}\right)$, the transformation $\varphi_{\lambda_{1}}$ has only the eigenvalue 0 , so $\varphi=\varphi_{\lambda_{1}}+\lambda_{1} \mathrm{I}$ has only the eigenvalue λ_{1}. Also, on the invariant $\operatorname{subspace} \operatorname{Im}\left(\varphi_{\lambda_{1}}^{\mathrm{k}_{1}}\right), \varphi_{\lambda_{1}}$ has no zero eigenvalues, hence φ has no eigenvalues equal to λ_{1}. Hence, we may put $U_{1}:=\operatorname{Ker}\left(\varphi_{\lambda_{1}}^{\mathrm{k}}\right)$ and then apply the induction hypothesis to the linear transformation φ on the subspace $\mathrm{V}^{\prime}=\operatorname{Im}\left(\varphi_{\lambda_{1}}^{\mathrm{k}}\right)$ where it has fewer eigenvalues.

Let us remark that the claim that the eigenvalues of φ on the subspace $V^{\prime}=\operatorname{Im}\left(\varphi_{\lambda_{1}}^{k}\right)$ will be $\lambda_{2}, \ldots, \lambda_{k}$. This follows from the fact that if $\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2}$ is a decomposition of V into a sum of two invariant subspaces, the characteristic polynomial of φ on V is the product of the characteristic polynomials on V_{1} and V_{2} : the determinant of a block matrix is equal to the product of determinant of blocks.

