
MA1112: Solutions to the midterm test

1. The intersection of these subspaces, by definition, is the set of all vec-

tors of the form a

−1
0
1

 + b

 3
−2
−1

 whose coordinates satisfy the equation

x+y+4z = 0, which means that (−a+3b)+(−2b)+4(a−b) = 0, or 3a−3b = 0, so

a = b, and the intersection is spanned by the vector h =
−1

0
1

+
 3
−2
−1

=
 2
−2
0

. It

is a one-dimensional space. Each of the subspaces U and V is two-dimensional:
the first one is the span of two vectors that are not proportional, and the sec-
ond one is the solution space to one linear equations in three unknowns, so
there are two free variables. Thus, in each case, the relative basis consists of
one vector, and it is enough to choose one vector in each subspace that is not

proportional to h. For the subspace U , we may take

−1
0
1

. For the subspace V ,

we may take the basis vector corresponding to one of the free variables

−4
0
1

.

(The other basis vector is proportional to h.)

2. Suppose that

x
y
z

 is a vector in our plane. Its image under the given trans-

formation is the vector

−26x +20y +21z
11x −9y −9z

−49x +40y +40z

. A subspace is invariant if the image

under every vector is again inside that same subspace, so we need to check if
the coordinates of the result satisfy the same equation:

(−26x +20y +21z)−2(11x −9y −9z)− (−49x +40y +40z) = x −2y − z,

so the same equation is satisfied, and the subspace is invariant.
3. We begin with computing the characteristic polynomial of this matrix:

det

6− t −23 14
3 −16− t 10
2 −14 9− t

=−t 3 − t 2 +5t −3.

We note that t = 1 is a root, which leads to a factorisation

−t 3 − t 2 +5t +3 =−(t −1)2(t +3),



so our linear transformation has eigenvalues 1 and −3. The multiplicity of the
eigenvalue −3 is equal to one, so this eigenvalue has just one Jordan block of
size 1. The multiplicity of the eigenvalue 1 is equal to two. Note that

A− I =
5 −23 14

3 −17 10
2 −14 8


is a matrix of rank greater than 1 (since its rows are not all proportional), which
tells us that out of two possible Jordan forms1 0 0

0 1 0
0 0 −3

 ,

1 0 0
1 1 0
0 0 −3

 ,

the second one is correct: its rank after subtracting I is equal to two, and for the
first one, the rank after subtracting I is equal to one. To find the Jordan basis,
we need to compute the kernel of (A− I )2. The answer is

(A− I )2 =
−16 80 −48
−16 80 −48
−16 80 −48

 .

Note: we already know that the Jordan form is

1 0 0
1 1 0
0 0 −3

, and from this we

can predict rk(A − I )2 = 1. Since we only care about ker(A − I ), knowing one
nonzero row of (A − I )2 is enough: for a rank one matrix, they are all propor-
tional. This can simplify computations. Now, let us find a Jordan basis. By a

direct computation, the vector

−1/2
1/2

1

 forms a basis for ker(A− I ), and the vec-

tors

5
1
0

 and

−3
0
1

 form a basis for ker(A− I )2. For a basis of ker(A− I )2 relatiive

to ker(A − I ), we may take any vector of the latter kernel not proportional to−1/2
1/2

1

, so for example e =
5

1
0

. We have (A − I )e =
 2
−2
−4

. Finally, the vector

f =
1

1
1

 forms a basis for ker(A +3I ). Altogether, the vectors e, (A − I )e, f form a

Jordan basis.
4. By rank–nullity theorem, we have null(ϕ2) = 4−rk(ϕ2), so null(ϕ2) = 2. We

know that ker(ϕ) ⊆ ker(ϕ2), so null(ϕ) = dimker(ϕ) É dimker(ϕ2) = null(ϕ2) = 2,



so the possible values of null(ϕ) are 0, 1, and 2. We note that the value 0 for
nullity is impossible, since if null(ϕ) = 0, then null(ϕ2) = 0: whenever ϕ2(v) = 0,
we have ϕ(ϕ(v)) = 0, implying ϕ(v) = 0 and implying v = 0; at the same time
we know that rk(ϕ2) = 2, so null(ϕ2) = 2. The value 1 for nullity is possible; for
example, it is attained for the linear transformation with the matrix

0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

The value 2 for nullity is also possible; for example, it is attained for the linear
transformation with the matrix 

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .


