1112: Linear Algebra II Selected final exam questions from past years

April 2, 2019

(a) Find all eigenvalues and eigenvectors of the matrix 1.

$$B = \begin{pmatrix} -4 & -4 \\ 1 & 0 \end{pmatrix}.$$

- (b) Find the Jordan normal form of the matrix B from the previous question, and a matrix C that transforms *B* to its Jordan normal form.
- (c) Find a formula for B^n , and use it to find a formula for the n^{th} term of the sequence defined recursively by $a_0 = 2$, $a_1 = 1$, $a_{n+1} = -4a_n - 4a_{n-1}$.
- 2. In the vector space of all polynomials in t of degree at most 2 with the scalar product

$$(p(t), q(t)) = \int_{-1}^{1} p(t)q(t) dt,$$

find the orthogonal basis which is the output of the Gram-Schmidt orthogonalisation applied to the basis 2 + 3t, $t^2 - 1$, t - 1.

- 3. (a) Formulate the Sylvester's criterion for a quadratic form to be positive definite.
 - (b) Determine all values of the parameter *a* for which the quadratic form

$$q(xe_1 + ye_2 + ze_3) = (18 + a)x^2 + 3y^2 + az^2 + 10xy - (8 + 2a)xz - 4yz$$

is positive definite.

4. Is the subspace U of \mathbb{R}^4 spanned by $\begin{pmatrix} 1\\1\\4\\-2 \end{pmatrix}$ and $\begin{pmatrix} -2\\-1\\-1\\1 \end{pmatrix}$ an invariant subspace of the operator A

whose matrix relative to the standard basis is

$$\begin{pmatrix} 0 & 3 & -3 & -1 \\ 1 & 3 & -1 & 0 \\ 7 & 12 & 2 & 3 \\ -3 & -6 & 0 & -1 \end{pmatrix}$$
?

Explain your answer.

5. (a) Find all eigenvalues and eigenvectors of the matrix

$$B = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}.$$

(b) Find the Jordan normal form of the matrix *B*, and a matrix *C* which is the transition matrix of some Jordan basis of B.

(c) Find a formula for B^n , and use it to find a closed formula for the n^{th} terms of the sequences $\{x_m\}, \{y_m\}$ defined recursively as follows:

$$x_0 = 1, y_0 = -5,$$

 $x_{k+1} = x_k - y_k, \quad y_{k+1} = x_k + 3y_k.$

6. (a) Which bases of a Euclidean space V are called orthogonal? orthonormal?

(b) Show that the
$$f_1 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$
, $f_2 = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$, and $f_3 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ form a basis of \mathbb{R}^3 .

- (c) Find the orthogonal basis of \mathbb{R}^3 which is the output of the Gram-Schmidt orthogonalisation applied to the basis from the previous question. (The scalar product on the \mathbb{R}^3 is the standard one.)
- 7. (a) Write down the definition of a bilinear form on a real vector space. Which symmetric bilinear forms are said to be positive definite?
 - (b) Consider the vector space *V* of all polynomials in *t* of degree at most 2. The bilinear form ψ_a on *V* (depending on a [real] parameter *a*) is defined by the formula

$$\psi_a(f(t), g(t)) = \int_{-1}^1 f(t)g(t)(t-a) dt$$

Determine all values of *a* for which ψ_a is positive definite.

8. (a) Determine the Jordan normal form and find some Jordan basis for the matrix

$$A = \begin{pmatrix} 3 & -4 & 6\\ 1 & -5 & 3\\ 0 & -4 & 1 \end{pmatrix}$$

- (b) Find a closed formula for A^n .
- 9. (a) Write down the definition of a Euclidean vector space.
 - (b) The function $f_a: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ (depending on a real parameter *a*) is defined by the formula

$$f_a(x_1e_1 + x_2e_2 + x_3e_3, y_1e_1 + y_2e_2 + y_3e_3) =$$

= 2x₁y₁ + (x₁y₂ + x₂y₁) + (2a - 1)x₂y₂ -
- a(x₁y₃ + x₃y₁) - (x₂y₃ + x₃y₂) + x₃y₃

(here e_1 , e_2 , e_3 is a basis of \mathbb{R}^3). Determine all values of *a* for which f_a is a scalar product.

10. Let *V* be a vector space. Show that for every two linear operators $A: V \to V$ and $B: V \to V$ we have

$$\operatorname{rk}(AB) \leq \operatorname{rk}(A)$$
 and $\operatorname{rk}(AB) \leq \operatorname{rk}(B)$.

Show that if *B* is invertible, then rk(BA) = rk(A), and give an example showing that this equality might hold even if *B* is not invertible.

11. (a) Determine the Jordan normal form and find some Jordan basis for the matrix

$$A = \begin{pmatrix} 9 & 5 & 2 \\ -16 & -9 & -4 \\ 2 & 1 & 1 \end{pmatrix}$$

(b) Find a closed formula for A^n .

12. (a) A quadratic form *Q* on the space \mathbb{R}^3 is defined by the formula

$$Q(xe_1 + ye_2 + ze_3) = (20 + 4a)x^2 + 12(1 + a)xz + 6y^2 + 3z^2$$

Find all values of the parameter *a* for which this form is positive definite.

- 13. A square matrix *A* (of some size $n \times n$) satisfies the condition $A^2 8A + 15I = 0$.
 - (a) Show that this matrix is similar to a diagonal matrix.
 - (b) Show that for every positive integer $k \ge 8$ there exists a matrix *A* satisfying the above condition with tr(A) = k.
- 14. (a) Determine the Jordan normal form and find some Jordan basis for the matrix

$$A = \begin{pmatrix} 2 & -5 & 3 \\ 2 & -6 & 4 \\ 3 & -9 & 6 \end{pmatrix}.$$

- (b) Find a closed formula for A^n .
- 15. (a) A quadratic form *Q* on the three-dimensional space with a basis e_1 , e_2 , e_3 is defined by the formula

$$Q(xe_1 + ye_2 + ze_3) = 3x^2 + 2axy + (2 - 2a)xz + (a + 2)y^2 + 2ayz + 3z^2$$

Find all values of the parameter *a* for which this form is positive definite. 16. In the vector space $V = \mathbb{R}^5$, consider the subspace *U* spanned by the vectors

$$\begin{pmatrix} 2\\2\\1\\-12\\7\\-3 \end{pmatrix}, \begin{pmatrix} -4\\1\\-12\\6\\-4 \end{pmatrix}, \begin{pmatrix} 1\\1\\3\\4\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\3\\1\\2 \end{pmatrix}, \text{ and } \begin{pmatrix} -1\\0\\0\\1\\1 \end{pmatrix}.$$

(a) Compute $\dim U$.

(b) Which of the vectors
$$\begin{pmatrix} 4\\0\\5\\-3\\-1 \end{pmatrix}$$
, $\begin{pmatrix} 2\\1\\8\\4\\2 \end{pmatrix}$, $\begin{pmatrix} 4\\2\\4\\0\\0 \end{pmatrix}$, and $\begin{pmatrix} 1\\0\\5\\0\\2 \end{pmatrix}$ belong to U ?

17. Consider the matrices

$$A = \begin{pmatrix} 2 & 3 & 4 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Describe the Jordan normal form and find some Jordan basis for *A*.
- (b) Is A similar to B? Is A^2 similar to B? Explain your answers.
- 18. Consider the vector space *V* of all $n \times n$ -matrices, and define a bilinear form on this space by the formula $(A, B) = tr(AB^T)$.
 - (a) Show that this bilinear form is a scalar product on the space of all matrices.
 - (b) Show that with respect to that scalar product the subspace of all symmetric matrices (matrices A with $A = A^T$) is the orthogonal complement of the space of all skew-symmetric matrices (matrices A with $A = -A^T$).
- 19. Does there exist a 9×9 -matrix *B* for which the matrix B^2 has the Jordan normal form with blocks of sizes 4,3,2 appearing once, each block with the eigenvalue 0? Same question for the block sizes 4,4,1.