1112: Linear Algebra II Selected final exam questions from past years

April 2, 2019

1. (a) Find all eigenvalues and eigenvectors of the matrix

$$
B=\left(\begin{array}{cc}
-4 & -4 \\
1 & 0
\end{array}\right)
$$

(b) Find the Jordan normal form of the matrix B from the previous question, and a matrix C that transforms B to its Jordan normal form.
(c) Find a formula for B^{n}, and use it to find a formula for the $n^{\text {th }}$ term of the sequence defined recursively by $a_{0}=2, a_{1}=1, a_{n+1}=-4 a_{n}-4 a_{n-1}$.
2. In the vector space of all polynomials in t of degree at most 2 with the scalar product

$$
(p(t), q(t))=\int_{-1}^{1} p(t) q(t) d t
$$

find the orthogonal basis which is the output of the Gram-Schmidt orthogonalisation applied to the basis $2+3 t, t^{2}-1, t-1$.
3. (a) Formulate the Sylvester's criterion for a quadratic form to be positive definite.
(b) Determine all values of the parameter a for which the quadratic form

$$
q\left(x e_{1}+y e_{2}+z e_{3}\right)=(18+a) x^{2}+3 y^{2}+a z^{2}+10 x y-(8+2 a) x z-4 y z
$$

is positive definite.
4. Is the subspace U of \mathbb{R}^{4} spanned by $\left(\begin{array}{c}1 \\ 1 \\ 4 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ -1 \\ -1 \\ 1\end{array}\right)$ an invariant subspace of the operator A whose matrix relative to the standard basis is

$$
\left(\begin{array}{cccc}
0 & 3 & -3 & -1 \\
1 & 3 & -1 & 0 \\
7 & 12 & 2 & 3 \\
-3 & -6 & 0 & -1
\end{array}\right) ?
$$

Explain your answer.
5. (a) Find all eigenvalues and eigenvectors of the matrix

$$
B=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right)
$$

(b) Find the Jordan normal form of the matrix B, and a matrix C which is the transition matrix of some Jordan basis of B.
(c) Find a formula for B^{n}, and use it to find a closed formula for the $n^{\text {th }}$ terms of the sequences $\left\{x_{m}\right\},\left\{y_{m}\right\}$ defined recursively as follows:

$$
\begin{gathered}
x_{0}=1, y_{0}=-5 \\
x_{k+1}=x_{k}-y_{k}, \quad y_{k+1}=x_{k}+3 y_{k} .
\end{gathered}
$$

6. (a) Which bases of a Euclidean space V are called orthogonal? orthonormal?
(b) Show that the $f_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right), f_{2}=\left(\begin{array}{c}0 \\ -2 \\ 3\end{array}\right)$, and $f_{3}=\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right)$ form a basis of \mathbb{R}^{3}.
(c) Find the orthogonal basis of \mathbb{R}^{3} which is the output of the Gram-Schmidt orthogonalisation applied to the basis from the previous question. (The scalar product on the \mathbb{R}^{3} is the standard one.)
7. (a) Write down the definition of a bilinear form on a real vector space. Which symmetric bilinear forms are said to be positive definite?
(b) Consider the vector space V of all polynomials in t of degree at most 2 . The bilinear form ψ_{a} on V (depending on a [real] parameter a) is defined by the formula

$$
\psi_{a}(f(t), g(t))=\int_{-1}^{1} f(t) g(t)(t-a) d t
$$

Determine all values of a for which ψ_{a} is positive definite.
8. (a) Determine the Jordan normal form and find some Jordan basis for the matrix

$$
A=\left(\begin{array}{lll}
3 & -4 & 6 \\
1 & -5 & 3 \\
0 & -4 & 1
\end{array}\right)
$$

(b) Find a closed formula for A^{n}.
9. (a) Write down the definition of a Euclidean vector space.
(b) The function $f_{a}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ (depending on a real parameter a) is defined by the formula

$$
\begin{aligned}
& f_{a}\left(x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}, y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}\right)= \\
&=2 x_{1} y_{1}+\left(x_{1} y_{2}+x_{2} y_{1}\right)+(2 a-1) x_{2} y_{2}- \\
&-a\left(x_{1} y_{3}+x_{3} y_{1}\right)-\left(x_{2} y_{3}+x_{3} y_{2}\right)+x_{3} y_{3}
\end{aligned}
$$

(here e_{1}, e_{2}, e_{3} is a basis of \mathbb{R}^{3}). Determine all values of a for which f_{a} is a scalar product.
10. Let V be a vector space. Show that for every two linear operators $A: V \rightarrow V$ and $B: V \rightarrow V$ we have

$$
\operatorname{rk}(A B) \leqslant \operatorname{rk}(A) \quad \text { and } \quad \operatorname{rk}(A B) \leqslant \operatorname{rk}(B)
$$

Show that if B is invertible, then $\operatorname{rk}(B A)=\operatorname{rk}(A)$, and give an example showing that this equality might hold even if B is not invertible.
11. (a) Determine the Jordan normal form and find some Jordan basis for the matrix

$$
A=\left(\begin{array}{ccc}
9 & 5 & 2 \\
-16 & -9 & -4 \\
2 & 1 & 1
\end{array}\right)
$$

(b) Find a closed formula for A^{n}.
12. (a) A quadratic form Q on the space \mathbb{R}^{3} is defined by the formula

$$
Q\left(x e_{1}+y e_{2}+z e_{3}\right)=(20+4 a) x^{2}+12(1+a) x z+6 y^{2}+3 z^{2} .
$$

Find all values of the parameter a for which this form is positive definite.
13. A square matrix A (of some size $n \times n$) satisfies the condition $A^{2}-8 A+15 I=0$.
(a) Show that this matrix is similar to a diagonal matrix.
(b) Show that for every positive integer $k \geqslant 8$ there exists a matrix A satisfying the above condition with $\operatorname{tr}(A)=k$.
14. (a) Determine the Jordan normal form and find some Jordan basis for the matrix

$$
A=\left(\begin{array}{lll}
2 & -5 & 3 \\
2 & -6 & 4 \\
3 & -9 & 6
\end{array}\right)
$$

(b) Find a closed formula for A^{n}.
15. (a) A quadratic form Q on the three-dimensional space with a basis e_{1}, e_{2}, e_{3} is defined by the formula

$$
Q\left(x e_{1}+y e_{2}+z e_{3}\right)=3 x^{2}+2 a x y+(2-2 a) x z+(a+2) y^{2}+2 a y z+3 z^{2}
$$

Find all values of the parameter a for which this form is positive definite.
16. In the vector space $V=\mathbb{R}^{5}$, consider the subspace U spanned by the vectors

$$
\left(\begin{array}{c}
2 \\
2 \\
1 \\
7 \\
-3
\end{array}\right), \quad\left(\begin{array}{c}
-4 \\
1 \\
-12 \\
6 \\
-4
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
1 \\
3 \\
4 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
3 \\
1 \\
2
\end{array}\right), \text { and }\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

(a) Compute $\operatorname{dim} U$.
(b) Which of the vectors $\left(\begin{array}{c}4 \\ 0 \\ 5 \\ -3 \\ -1\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 8 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 4 \\ 0 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 0 \\ 5 \\ 0 \\ 2\end{array}\right)$ belong to U ?
17. Consider the matrices

$$
A=\left(\begin{array}{ccc}
2 & 3 & 4 \\
-2 & -2 & -2 \\
1 & 1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

(a) Describe the Jordan normal form and find some Jordan basis for A.
(b) Is A similar to B ? Is A^{2} similar to B ? Explain your answers.
18. Consider the vector space V of all $n \times n$-matrices, and define a bilinear form on this space by the formula $(A, B)=\operatorname{tr}\left(A B^{T}\right)$.
(a) Show that this bilinear form is a scalar product on the space of all matrices.
(b) Show that with respect to that scalar product the subspace of all symmetric matrices (matrices A with $A=A^{T}$) is the orthogonal complement of the space of all skew-symmetric matrices (matrices A with $A=-A^{T}$).
19. Does there exist a 9×9-matrix B for which the matrix B^{2} has the Jordan normal form with blocks of sizes $4,3,2$ appearing once, each block with the eigenvalue 0 ? Same question for the block sizes $4,4,1$.

