1112: Linear Algebra II
 Selected midterm questions from past years

February 13, 2019

1. (a) Show that for every vector $\mathbf{v} \in \mathbb{R}^{3}$ the map $A_{\mathbf{v}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by the formula

$$
A_{\mathbf{v}}(\mathbf{w})=\mathbf{v} \times \mathbf{w}
$$

is linear, and show that for $\mathbf{v} \neq 0$ this linear map has rank 2.
(b) Let U, V and W be three vector spaces. Show that for every two linear operators $\mathrm{A}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{B}: \mathrm{U} \rightarrow \mathrm{V}$ we have

$$
\operatorname{rk}(A B) \leqslant \operatorname{rk}(A) \quad \text { and } \quad \operatorname{rk}(A B) \leqslant \operatorname{rk}(B) .
$$

2. Consider the matrices

$$
A=\left(\begin{array}{ccc}
9 & 5 & 2 \\
-16 & -9 & -4 \\
2 & 1 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

(a) Describe all eigenvalues and eigenvectors of A and B.
(b) Describe the Jordan normal form of A and find a Jordan basis for A.
3. Assume that for a $n \times n$-matrix A with real matrix elements we have $A^{2}=-E$. Prove that $\operatorname{tr} A=0$.
4. (a) Consider the vector space V of all 2×2-matrices (with obvious addition and multiplication by scalars). Show that for every 2×2-matrix A the map $L_{A}: V \rightarrow V$ given by the formula $L_{A}(X)=A X-X A$, is linear. In the case $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$, write down the matrix of L_{A} relative to the basis $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, $E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), E_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), E_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and compute $\operatorname{rk}\left(\mathrm{L}_{\mathrm{A}}\right)$.
(b) Let V and W be vector spaces. Show that for every two linear $\operatorname{maps} A, B: V \rightarrow W$ we have

$$
\operatorname{rk}(A+B) \leqslant \operatorname{rk}(A)+\operatorname{rk}(B)
$$

5. Consider the matrices

$$
A=\left(\begin{array}{ccc}
-2 & -4 & 16 \\
0 & 2 & 0 \\
-1 & -1 & 6
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

(a) Describe all eigenvalues and eigenvectors of A and B.
(b) Describe the Jordan normal form of A and find a Jordan basis for A.
6. (a) Show that if for square matrices A and B it is known that A is similar to B, then A^{\top} is similar to B^{\top} (here X^{\top}, as usual, denotes the transpose matrix of X).
(b) Show that (over complex numbers) every square matrix \mathcal{A} is similar to A^{\top}
7. Determine the Jordan normal form and find some Jordan basis for the linear transformation of \mathbb{R}^{3} that multiplies every vector by the matrix

$$
\left(\begin{array}{lll}
3 & -3 & 1 \\
2 & -2 & 1 \\
2 & -3 & 2
\end{array}\right)
$$

8. For two $n \times n$-matrices A and B, we have $A B-B A=B$. Show that
(a) $\operatorname{tr}(B)=0$;
(b) $\operatorname{tr}\left(B^{2}\right)=0$;
(c) $\operatorname{tr}\left(B^{k}\right)=0$ for all positive integers k.
9. Define the rank of a linear map. Compute the rank of the linear map $A: \mathbb{R}^{8} \rightarrow \mathbb{R}^{4}$ whose matrix relative to the standard bases of these spaces is

$$
\left(\begin{array}{cccccccc}
3 & 5 & 4 & 2 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & -1 & 2 & 4 & 1 & 1 \\
4 & 1 & 1 & 0 & 1 & 0 & 2 & -1 \\
-1 & 0 & 1 & 1 & 2 & 1 & 1 & -2
\end{array}\right)
$$

10. In the vector space $V=\mathbb{R}^{5}$, consider the subspace U spanned by the vectors

$$
\left(\begin{array}{c}
2 \\
2 \\
1 \\
7 \\
-3
\end{array}\right), \quad\left(\begin{array}{c}
-4 \\
1 \\
-12 \\
6 \\
-4
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
1 \\
3 \\
4 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
3 \\
1 \\
2
\end{array}\right), \text { and }\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

(a) Compute dim U.
(b) Which of the vectors $\left(\begin{array}{c}4 \\ 0 \\ 5 \\ -3 \\ -1\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 8 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 4 \\ 0 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 0 \\ 5 \\ 0 \\ 2\end{array}\right)$ belong to U?
11. Consider the matrices

$$
A=\left(\begin{array}{ccc}
-3 & 1 & 0 \\
-1 & -1 & 0 \\
-1 & -2 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
-2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Describe the Jordan normal form and find some Jordan basis for A. Do A and B represent the same linear transformation in different coordinate systems? Explain your answer.
12. Which of the maps $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} from the vector space of all polynomials in one variable to the same space are linear? Explain your answers.

$$
\begin{aligned}
(\mathcal{A p})(\mathrm{t}) & =\mathrm{p}(\mathrm{t}+1)-\mathrm{p}(\mathrm{t}) \\
(\mathcal{B} p)(\mathrm{t}) & =\mathrm{p}(\mathrm{t}) \mathrm{p}^{\prime}(\mathrm{t}) \\
(\mathcal{C} p)(\mathrm{t}) & =\mathrm{p}(\mathrm{t}+1)+\mathrm{p}^{\prime}(\mathrm{t}) \\
(\mathcal{D} p)(\mathrm{t}) & =\mathrm{p}(\mathrm{t}+1)-1
\end{aligned}
$$

13. Under what condition a subspace U of a vector space V is said to be an invariant subspace of a linear transformation $A: V \rightarrow V$? Is the subspace U of \mathbb{R}^{4} spanned by $\left(\begin{array}{c}1 \\ 1 \\ 4 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ -1 \\ -1 \\ 1\end{array}\right)$ an invariant subspace of the linear map whose matrix relative to the standard basis of \mathbb{R}^{4} is

$$
\left(\begin{array}{cccc}
0 & 3 & -3 & -1 \\
1 & 3 & -1 & 0 \\
7 & 12 & 2 & 3 \\
-3 & -6 & 0 & -1
\end{array}\right) ?
$$

Explain your answer.
14. Determine the Jordan normal form and find some Jordan basis for the matrix $A=\left(\begin{array}{lll}3 & -3 & 1 \\ 2 & -2 & 1 \\ 2 & -3 & 2\end{array}\right)$. Determine if A and the matrix $B=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ represent the same linear transformation in different coordinate systems.

