MA 1112: Linear Algebra II

Tutorial problems, January 29, 2019
Consider two subspaces of \mathbb{R}^{4} : the subspace U_{1} which is the linear span of the vectors

$$
\left(\begin{array}{c}
0 \\
3 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{c}
-9 \\
8 \\
2 \\
-3
\end{array}\right),\left(\begin{array}{l}
4 \\
1 \\
1 \\
1
\end{array}\right),
$$

and the subspace U_{2} which is the linear span of the vectors

$$
\left(\begin{array}{c}
6 \\
0 \\
-3 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
3 \\
0 \\
5
\end{array}\right),\left(\begin{array}{c}
9 \\
-1 \\
-5 \\
0
\end{array}\right)
$$

1. Find a basis of U_{1} and a basis of U_{2}.
2. Find a basis for the intersection $\mathrm{U}_{1} \cap \mathrm{U}_{2}$.
3. Find a basis of U_{1} relative to $\mathrm{U}_{1} \cap \mathrm{U}_{2}$.
4. Is the subspace spanned by the vectors $v_{1}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ invariant under the linear transformation φ of \mathbb{R}^{3} that multiplies every vector by the matrix $A=\left(\begin{array}{ccc}-4 & 4 & 5 \\ 16 & 2 & -6 \\ -16 & 1 & 9\end{array}\right)$? Explain your answer.
