MA 1112: Linear Algebra II Tutorial problems, January 29, 2019

Consider two subspaces of \mathbb{R}^4 : the subspace U_1 which is the linear span of the vectors

$$\begin{pmatrix} 0\\3\\-2\\2 \end{pmatrix}, \begin{pmatrix} -9\\8\\2\\-3 \end{pmatrix}, \begin{pmatrix} 4\\1\\1\\1 \end{pmatrix},$$

and the subspace U_2 which is the linear span of the vectors

$$\begin{pmatrix} 6\\0\\-3\\1 \end{pmatrix}, \begin{pmatrix} 3\\3\\0\\5 \end{pmatrix}, \begin{pmatrix} 9\\-1\\-5\\0 \end{pmatrix}$$

- **1.** Find a basis of U_1 and a basis of U_2 .
- **2.** Find a basis for the intersection $U_1 \cap U_2$.
- **3.** Find a basis of U_1 relative to $U_1 \cap U_2$.

3. Find a basis of u_1 relative to $u_1 + u_2$. 4. Is the subspace spanned by the vectors $v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$

invariant under the linear transformation φ of \mathbb{R}^3 that multiplies every vector

by the matrix $A = \begin{pmatrix} -4 & 4 & 5\\ 16 & 2 & -6\\ -16 & 1 & 9 \end{pmatrix}$? Explain your answer.