MA 1112: Linear Algebra II

Tutorial problems, February 12, 2019
Recall that in class we learned that for computing the Jordan normal form and a Jordan basis of a linear transformation φ of a vector space V , one can use the following plan:

- Find all eigenvalues of φ (that is, compute the characteristic polynomial $\operatorname{det}(A-c I)$ of the corresponding matrix A, and determine its roots λ_{1}, \ldots, λ_{k}).
- For each eigenvalue λ, form the linear transformation $B_{\lambda}=\varphi-\lambda I$ and consider the increasing sequence of subspaces

$$
\operatorname{Ker} \mathrm{B}_{\lambda} \subset \operatorname{Ker} \mathrm{B}_{\lambda}^{2} \subset \ldots
$$

and determine where it stabilizes, that is find k which is the smallest number such that $\operatorname{Ker} B_{\lambda}^{k}=\operatorname{Ker} B_{\lambda}^{k+1}$. Let $U_{\lambda}=\operatorname{Ker} B_{\lambda}^{k}$. The subspace U_{λ} is an invariant subspace of $B_{\lambda}(\operatorname{and} \varphi)$, and B_{λ} is nilpotent on U_{λ}, so it is possible to find a basis consisting of several "threads" of the form $f, B_{\lambda} f, B_{\lambda}^{2} f, \ldots$, where B_{λ} shifts vectors along each thread (as in the previous homework).

- Joining all the threads (for different $\boldsymbol{\lambda}$) together, we get a Jordan basis for A. A thread of length p for an eigenvalue λ contributes a Jordan block $\mathrm{J}_{\mathrm{p}}(\lambda)$ to the Jordan normal form.

Find the Jordan normal form and a Jordan basis for transformations represented by matrices:

1. $A=\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right)$.
2. $A=\left(\begin{array}{ccc}6 & 5 & -2 \\ -8 & -8 & 4 \\ -12 & -15 & 8\end{array}\right)$.
3. $A=\left(\begin{array}{ccc}11 & 8 & 28 \\ -7 & -5 & -18 \\ -4 & -4 & -7\end{array}\right)$.
