MA 1112: Linear Algebra II
Tutorial problems, March 12, 2019

1. For the space \mathbb{R}^{3} with the standard scalar product, find the orthogonal basis e_{1}, e_{2}, e_{3} obtained by Gram-Schmidt orthogonalisation from $f_{1}=\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right)$, $f_{2}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right), f_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
2. Show that the formula

$$
\left.\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right)=x_{1} x_{2}+\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)+y_{1} y_{2} .
$$

defines a scalar product on \mathbb{R}^{2}, and find an orthonormal basis of \mathbb{R}^{2} with respect to that scalar product.
3. For the vector space of all polynomials in t of degree at most 3 and the scalar product on this space given by

$$
(p(t), q(t))=\int_{-1}^{1} p(t) q(t) d t
$$

find the result of Gram-Schmidt orthogonalisation of the vectors $1, t, t^{2}, t^{3}$.
Optional question: Show that in \mathbb{R}^{n}, it is impossible to find $n+2$ vectors that only form obtuse angles (that is, $\left(v_{i}, v_{j}\right)<0$ for all $i \neq j$).

