MA 1112: Linear Algebra II Tutorial problems, March 12, 2019

1. For the space \mathbb{R}^3 with the standard scalar product, find the orthogonal basis e_1 , e_2 , e_3 obtained by Gram–Schmidt orthogonalisation from $f_1 = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$,

$$f_2 = \begin{pmatrix} 1\\2\\4 \end{pmatrix}, f_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

2. Show that the formula

$$\binom{x_1}{y_1}, \binom{x_2}{y_2} = x_1 x_2 + \frac{1}{2} (x_1 y_2 + x_2 y_1) + y_1 y_2.$$

defines a scalar product on \mathbb{R}^2 , and find an orthonormal basis of \mathbb{R}^2 with respect to that scalar product.

3. For the vector space of all polynomials in t of degree at most 3 and the scalar product on this space given by

$$(p(t), q(t)) = \int_{-1}^{1} p(t)q(t) dt,$$

find the result of Gram–Schmidt orthogonalisation of the vectors 1, t, t^2 , t^3 .

Optional question: Show that in \mathbb{R}^n , it is impossible to find n + 2 vectors that only form obtuse angles (that is, $(v_i, v_j) < 0$ for all $i \neq j$).