MA 1112: Linear Algebra II Tutorial problems, March 26, 2019

1. Compute the eigenvalues of the matrix $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, and determine the sig-

nature of the quadratic form

$$q(x_1e_1 + x_2e_2 + x_3e_3) = x_1x_2 + x_2x_3.$$

2. Let

$$\varphi(x_1, x_2) = \sin^2(x_1 - x_2) - e^{\frac{1}{2}(x_1^2 + x_2^2) + 2cx_1x_2}.$$

Furthermore, let *A* be the symmetric 2×2-matrix with entries $a_{ij} = \frac{\partial^2 \varphi}{\partial x_i \partial x_j} (0, 0, 0)$.

(a) Write down the matrix A.

(**b**) Determine all values of the parameter c for which the corresponding quadratic form is positive definite.

(c) Does φ have a local minimum at the origin (0,0) for c = -3/5?

3. For the scalar product $(A, B) = tr(AB^T)$ on the space of all $n \times n$ -matrices, show that

$$(AB, AB) \leq (A, A)(B, B)$$

for all matrices *A* and *B*. (*Hint*: write (*AB*, *AB*) explicitly using the entries of *A* and *B*, and use the Cauchy–Schwartz inequality).

Optional question: Show that in \mathbb{R}^n , it is impossible to find n + 2 vectors that only form obtuse angles (that is, $(v_i, v_j) < 0$ for all $i \neq j$).