MA 1112: Linear Algebra II
Tutorial problems, March 26, 2019

1. The characteristic polynomial of the matrix $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ is $2 t-t^{3}=t\left(2-t^{2}\right)$, so the eigenvalues of this matrix are 0 and $\pm \sqrt{2}$. The matrix of the bilinear form corresponding to the quadratic form

$$
q\left(x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}\right)=x_{1} x_{2}+x_{2} x_{3}
$$

is equal to $1 / 2$ of the matrix in question, so its signature can be read off the eigenvalues of this matrix, and is $(1,1,1)$.
2. We have

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x_{1}}=2 \sin \left(x_{1}-x_{2}\right) \cos \left(x_{1}-x_{2}\right)-\left(x_{1}+2 c x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}= \\
& \quad=\sin 2\left(x_{1}-x_{2}\right)-\left(x_{1}+2 c x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}, \\
& \begin{aligned}
& \frac{\partial \varphi}{\partial x_{2}}=-2 \sin \left(x_{1}-x_{2}\right) \cos \left(x_{1}-x_{2}\right)-\left(2 c x_{1}+x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}= \\
&=-\sin 2\left(x_{1}-x_{2}\right)-\left(2 c x_{1}+x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}},
\end{aligned} \\
& \begin{aligned}
& \\
& \\
&
\end{aligned} \\
&
\end{aligned}
$$

and

$$
\begin{gathered}
\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}=2 \cos 2\left(x_{1}-x_{2}\right)-e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}-\left(x_{1}+2 c x_{2}\right)^{2} e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}, \\
\frac{\partial^{2} \varphi}{\partial x_{1} \partial x_{2}}=-2 \cos 2\left(x_{1}-x_{2}\right)-2 c e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}-\left(x_{1}+2 c x_{2}\right)\left(2 c x_{1}+x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}, \\
\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}=2 \cos 2\left(x_{1}-x_{2}\right)-e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}-\left(2 c x_{1}+x_{2}\right)^{2} e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}},
\end{gathered}
$$

so the matrix A is

$$
\left(\begin{array}{cc}
1 & -2-2 c \\
-2-2 c & 1
\end{array}\right)
$$

By Sylvester's criterion, this quadratic form is positive definite if and only if $\Delta_{2}=1-(2+2 c)^{2}>0$ (since $\Delta_{1}=1$). We have

$$
1-(2+2 c)^{2}=(1+2+2 c)(1-2-2 c)=(3+2 c)(-1-2 c)
$$

so the quadratic form is positive definite for $-3 / 2<c<-1 / 2$. In particular, this holds for $c=-3 / 5$.
3. As we mentioned in solutions to an earlier homework, (A, A) is equal to the sum of squares of all matrix elements of A. The i, j-th matrix element of $A B$ is $a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}$. The square of this number is, by Cauchy-Schwarz inequality, less than or equal to

$$
\left(a_{i 1}^{2}+\ldots+a_{i n}^{2}\right)\left(b_{1 j}^{2}+\ldots+b_{n j}^{2}\right)
$$

the sum of squares of all elements in the i-th row of A times the sum of squares of all elements in the j-th column of B. Adding these up for all i and j, we get $\operatorname{tr}\left(A A^{T}\right) \operatorname{tr}\left(B B^{T}\right)$.
4. Let us prove a stronger result. Suppose ν_{1}, \ldots, v_{k} are vectors that form pairwise obtuse angles. We shall demonstrate that if we throw away the vector v_{k}, the rest are linearly independent. Assume that the vectors v_{1}, \ldots, v_{k-1} are linearly dependent: $c_{1} v_{1}+\ldots+c_{k-1} v_{k-1}=0$. Without the loss of generality, we may assume that $c_{1}, \ldots, c_{l}>0$, and $c_{l+1}, \ldots, c_{k-1}<0$ (the general case differs by re-numbering, and by suppressing the terms with zero coefficients). Obviously, $1 \leqslant l<k-1$: if all the coefficients are positive, or all the coefficients are negative, the scalar product

$$
\left(e_{k}, c_{1} e_{1}+\ldots+c_{k-1} e_{k-1}\right)=c_{1}\left(e_{k}, e_{1}\right)+\ldots+c_{k-1}\left(e_{k}, e_{k-1}\right)
$$

cannot be equal to 0 . We have

$$
\begin{aligned}
0 \leqslant\left(c_{1} e_{1}+\ldots+c_{l} e_{l}, c_{1} e_{1}+\ldots+c_{l} e_{l}\right)=\left(c_{1} e_{1}+\ldots+c_{l} e_{l},-c_{l+1} e_{l+1}-\ldots\right. & \left.-c_{k-1} e_{k-1}\right)= \\
& =\sum_{1 \leqslant i \leqslant l, l+1 \leqslant j \leqslant k-1}-c_{i} c_{j}\left(e_{i}, e_{j}\right),
\end{aligned}
$$

which is clearly negative, a contradiction.

