MA2215: Fields, rings, and modules
Homework problems due on October 8, 2012

1. (a) Each homomorphism takes 0 to 0 , and $\varphi(\overline{2})=\varphi(\overline{1}+\overline{1})=\varphi(\overline{1})+\varphi(\overline{1})$, so we should just determine possible values of $\varphi(\overline{1})$. We have the constrain $\varphi(\overline{1} \cdot \overline{1})=\varphi(\overline{1}) \cdot \varphi(\overline{1})$, so $\varphi(\overline{1})(\varphi(\overline{1})-1)=0$. Since the target is $\mathbb{Z} / 3 \mathbb{Z}$, we conclude that the possible values are $\overline{0}$ and $\overline{1}$. In fact, both are fine: for $\varphi(\overline{1})=\varphi(\overline{0})=0$ the four required properties reduce to $0+0=0,0 \cdot 0=0,-0=0,0=0$, and for $\varphi(\overline{1})=\overline{1}$ and $\varphi(\overline{0})=\overline{0}$ the four required properties reduce to $a+b=a+b, a b=a b,-a=-a, 0=0$.
(b) If we start as above, we see that we only need to define $\varphi(\overline{1})$. Since $\overline{1}+\overline{1}+\overline{1}=\overline{3}=\overline{0}$ in $\mathbb{Z} / 3 \mathbb{Z}$, we want $\varphi(\overline{1})+\varphi(\overline{1})+\varphi(\overline{1})=\overline{0}$ to hold. But in $\mathbb{Z} / 2 \mathbb{Z}$ we have

$$
\varphi(\overline{1})+\varphi(\overline{1})+\varphi(\overline{1})=3 \varphi(\overline{1})=\varphi(\overline{1})
$$

and we conclude that $\varphi(\overline{1})=0$. Therefore, in this case the only map which is a homomorphism sends all elements to zero.
2. Let us, as suggested, consider the map between these rings that takes the coset of $f(x)+\left(x^{2}-1\right) \mathbb{R}[x]$ to the pair of numbers $(f(1), f(-1))$. Let us check that it is well defined. Indeed, if $f(x)$ and $g(x)$ are in the same coset, that is $f(x)=g(x)+h(x)\left(x^{2}-1\right)$, we have $f(1)=g(1)$ and $f(-1)=g(-1)$. It is also obviously a ring homomorphism, since when we add or multiply two polynomials, their respective values at 1 and -1 get multiplied as well. It remains to check that this map is a bijection. To check that it is injective, let us assume that $f(x)+\left(x^{2}-1\right) \mathbb{R}[x]$ and $g(x)+\left(x^{2}-1\right) \mathbb{R}[x]$ are mapped to the same pair (a, b), that is $f(1)=g(1)=a, f(-1)=g(-1)=b$. Then $f(x)-g(x)$ has roots 1 and -1 , so is divisible by $(x-1)$ and $(x+1)$, hence by $(x-1)(x+1)=x^{2}-1$. To check that our map is surjective, it is necessary to check that for all pairs a, b there exists a polynomial $f(x)$ with $f(1)=a$, $f(-1)=b$. All polynomials with $f(1)=a$ are of the form $h(x)(x-1)+a$. It is enough to pick $h(x)$ so that $-2 h(-1)+a=b$, so $h(-1)=-\frac{1}{2}(b-a)$. For instance, the constant polynomial $h(x)=-\frac{1}{2}(b-a)$ would do. So we have a homomorphism which is injective and surjective, therefore an isomorphism.
3. (\mathbf{a}) Of course: $(a+I)(b+I)$ is, by definition, $(a b+I)$, which because of commutativity is $(b a+I)=(b+I)(a+I)$.
(b) We have $(1+\mathrm{I})(\mathrm{r}+\mathrm{I})=(1 \cdot \mathrm{r}+\mathrm{I})=(\mathrm{r}+\mathrm{I})=(\mathrm{r} \cdot 1+\mathrm{I})=(\mathrm{r}+\mathrm{I})(1+\mathrm{I})$, so $(1+\mathrm{I})$ is a unit of R / I.
4. Let us consider the $\operatorname{map} \varphi: R \rightarrow R, \varphi\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right)$. This map is a homomorphism: when we add or subtract triangular matrices, their diagonal elements add/subtract, when we multiply triangular matrices, their diagonal elements multiply. The image of φ is clearly S, and the kernel of φ is I, since I consists precisely of triangular matrices with zero diagonal. By First Isomorphism Theorem, S is a subring, I is an ideal, and $S \simeq R / I$. To show that S is not an ideal, note that the product $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is not in S.

