MA2215: Fields, rings, and modules
Homework problems due on October 15, 2012

1. Let us, as suggested by the hint, use the map $\varphi: \operatorname{Mat}_{n}(R) \rightarrow \operatorname{Mat}_{n}(R / I)$,

$$
\varphi\left(\left(a_{p q}\right)_{p, q=1, \ldots, n}\right)=\left(a_{p q}+I\right)_{p, q=1, \ldots, n} .
$$

This map is a homomorphism because, for instance,

$$
\begin{aligned}
& \varphi(a b)_{p q}=(a b)_{p q}+I=\left(\sum_{i} a_{p i} b_{i q}\right)+I=\sum_{i}\left(a_{p i} b_{i q}+I\right)= \\
&=\sum_{i}\left(a_{p i}+I\right)\left(b_{i q}+I\right)=(\varphi(a) \varphi(b))_{p q}
\end{aligned}
$$

because of the definition of matrix product and the definition of operations in factor rings. The other properties of homomorphisms are checked similarly. Also, it is clear that $\operatorname{Im}(\varphi)=\operatorname{Mat}_{n}(R / I)$ (every matrix with the matrix element in row p and column q being the coset $r_{p q}+I$ is the image of the matrix with matrix elements $r_{p q}$), and that $\operatorname{Ker}(\varphi)=\operatorname{Mat}_{n}(I)$ (if $r_{p q}+I=0+I$ for all p, q, we have $r_{p q} \in I$ for all p, q.
2. Let us, as suggested by the hint, use the map $\varphi: R[t] \rightarrow(R / I)[t]$,

$$
\varphi\left(a_{0}+a_{1} t+\ldots+a_{n} t^{n}\right)=\left(a_{0}+I\right)+\left(a_{1}+I\right) t+\ldots+\left(a_{n}+I\right) t^{n}
$$

This map is a homomorphism because, for instance, for $f(t)=a_{0}+a_{1} t+\ldots+a_{n} t^{n}$ and $g(t)=b_{0}+b_{1} t+\ldots+b_{m} t^{m}$ the coefficient of t^{k} in $\varphi(f(t) g(t))$ is equal to

$$
\left(\sum_{i+j=k} a_{i} b_{j}\right)+I=\sum_{i+j=k}\left(a_{i} b_{j}+I\right)=\sum_{i+j=k}\left(a_{i}+I\right)\left(b_{j}+I\right)
$$

which is the coefficient of t^{k} of $\varphi(f(t)) \varphi(g(t))$ because of the definition of the polynomial product and the definition of operations in factor rings. The other properties of homomorphisms are checked similarly. Also, it is clear that $\operatorname{Im}(\varphi)=(\mathrm{R} / \mathrm{I})[\mathrm{t}]$ (every polynomial with the coefficient of t^{k} being the coset $r_{k}+I$ is the image of the polynomial with coefficients r_{k}), and that $\operatorname{Ker}(\varphi)=I[t]$ (if $r_{k}+I=0+I$ for all k, we have $r_{k} \in I$ for all k.
3. Let us, as suggested by the hint, use the map $\varphi: R / J \rightarrow R / I, \varphi(r+J)=r+I$. Since $J \subset I$, this map is well defined, and is a homomorphism: if r_{1} and r_{2} are in the same coset modulo J then they of course are in the same coset modulo I , and $(\mathrm{rs}+\mathrm{I})=(\mathrm{r}+\mathrm{I})(\mathrm{s}+\mathrm{I})$ in $R / I,(r s+J)=(r+J)(s+J)$ in R / J etc. Also, this map is obviously surjective, since all cosets $r+I$ are in the image by inspection of the formula for φ, and its kernel is the ideal of R / J which consists of all cosets $r+J$ for which $r+I=0+I$, so $r \in I$. This ideal is precisely I/J by Second Isomorphism Theorem.
4. (a) Yes, since for a nonzero polynomial in R its leading coefficient is $\overline{1}$, so for two nonzero polynomials the leading coefficient of the product is nonzero. (b) No, $\overline{2} \cdot \overline{2}=\overline{4}=0$. (c) Yes, since 5 is a prime number, so $\mathbb{Z} / 5 \mathbb{Z}$ is a field, and the argument from (a) applies. (d) $\mathrm{No},\left(\mathrm{t}+1+\left(\mathrm{t}^{2}-1\right) \mathbb{Z}[\mathrm{t}]\right)\left(\mathrm{t}-1+\left(\mathrm{t}^{2}-1\right) \mathbb{Z}[\mathrm{t}]\right)=\left(\mathrm{t}^{2}-1+\left(\mathrm{t}^{2}-1\right) \mathbb{Z}[\mathrm{t}]\right)=0$. (e) No, $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=0$.

