MA2215: Fields, rings, and modules
Homework problems due on October 22, 2012

1. It is enough to check that the maps $S \mapsto S / I$ and $\tilde{S} \mapsto \pi^{-1}(\tilde{S})$ that implement the one-to-one correspondence take ideals to ideals. To show that S / I is an ideal whenever S is, we need to show that $(r+I)(s+I)$ and $(s+I)(r+I)$ belong to S / I whenever $s+I$ does. But $(r+I)(s+I)=r s+I$ and $(s+I)(r+I)=s r+I$, so our statement follows from the fact that S is an ideal. The other way round, if \tilde{S} is an ideal of R / I, and $s \in \pi^{-1}(\tilde{S})$, then $s+I$ is in \tilde{S}, so $(r+I)(s+I)$ and $(s+I)(r+I)$ belong to \tilde{S} whenever $s+I$ does. But $(r+I)(s+I)=r s+I$ and $(s+\mathrm{I})(r+\mathrm{I})=s r+\mathrm{I}$, so we conclude that rs and sr belong to $\pi^{-1}(\tilde{S})$.
2. Answer: $\mathrm{t}, \mathrm{t}+1, \mathrm{t}-1, \mathrm{t}^{2}+\mathrm{t}-1, \mathrm{t}^{2}-\mathrm{t}-1$, and $\mathrm{t}^{2}+1$. Indeed, polynomials of degree 1 are always irreducible, since polynomials of degree 0 are invertible, and the product of two polynomials of degree 1 is of degree 2 . Also, $t \cdot t=t^{2}, t(t+1)=t^{2}+t, t(t-1)=t^{2}-t$, $(t+1)(t-1)=t^{2}-1,(t+1)^{2}=t^{2}+2 t+1=t^{2}-t+1$, and $(t-1)^{2}=t^{2}-2 t+1=t^{2}+t+1$ since we work in $\mathbb{Z} / 3 \mathbb{Z}$. These are all products of polynomials of degree 1 , and what remains is the list of irreducibles. In this case, we see that $t^{2}+t-1, t^{2}-t-1$, and $t^{2}+1$ are the three irreducible polynomials of degree 2.
3. Answer: $4+i$. Indeed, if $z=a b$, then $d(z)=d(a) d(b)$, so when looking for factorisations of a Gaussian integer it makes sense to factorise its norm. We have $d(13)=169$, so we should look for Gaussian integers of norm 13. We instantly find $(3-2 \mathfrak{i})(3+2 \mathfrak{i})=13$, so 13 is not irreducible. Also, $d(3+4 i)=25$, so possible divisors may have norm 5 . In fact, if we take $2+i$ of norm 5 as a candidate divisor, we see that $\frac{3+4 i}{2+i}=2+i$, so $3+4 i$ is not irreducible. Also, $d(4+i)=17$, so it has to be irreducible. Finally, $d(5+3 i)=34$, and if we take $1+\mathfrak{i}$ as a candidate divisor, we see that $\frac{5+3 i}{1+i}=4-i$, so $5+3 i$ is not irreducible.
4. Let us perform the Euclidean Algorithm. In \mathbb{C}, we have $\frac{13+33 i}{19+9 i}=\frac{16}{13}+\frac{15}{13} i$; rounding to closest integers, we get $1+i$ as a candidate for q, and $r=b-a q=3+5 i$. Now we do the same with $a=19+9 i$ and $r=3+5 i$. We have $\frac{a}{r}=3-2 i$, so a is divisible by r, and r is a greatest common divisor.
5. Performing long division, we see that

$$
2 t^{4}-7 t^{3}-2 t^{2}+5 t+7=\left(2 t^{3}-11 t^{2}+8 t+21\right)(t+2)+\left(12 t^{2}-32 t-35\right)
$$

and then

$$
2 t^{3}-11 t^{2}+8 t+21=(t / 6-17 / 36) *\left(12 t^{2}-32 t-35\right)-23 / 18 t+161 / 36
$$

Finally, $12 \mathrm{t}^{2}-32 \mathrm{t}-35$ is divisible by $-23 / 18 \mathrm{t}+161 / 36=-23 / 36(2 \mathrm{t}-7)$, so we can pick $2 t-7$ as a greatest common divisor.

