MA2215: Fields, rings, and modules Homework problems due on October 29, 2012

1. (a) Of course, if $\overline{a} \cdot \overline{b} = 1$ in $\mathbb{Z}/12\mathbb{Z}$, we have ab = 1 + 12k in \mathbb{Z} , which immediately shows that a can only be invertible if a is coprime to 12, and all these elements are invertible. Therefore the answer is $\overline{1}, \overline{5}, \overline{7}, \overline{11}$.

(b) No. If $\overline{8} \cdot \overline{a} = \overline{9}$ in $\mathbb{Z}/12\mathbb{Z}$, we have 8a = 9 + 12k in \mathbb{Z} , so 9 = 8a - 12k is even, a contradiction. Therefore, $\overline{9}$ is not even a multiple of $\overline{8}$, let alone associate.

(c) Suppose that b = ac and a = bd, where $c, d \in R$. We have b = ac = bdc, so we conclude that either b = 0 or 1 = dc since R is an integral domain, and we can cancel nonzero factors. If b = 0, then a = bd = 0, and a = b, so they are associates. Otherwise, 1 = dc, so $c, d \in R^{\times}$, and so a and b are associates.

2. (a) The elements of our ring are $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$, $\overline{6}$, $\overline{7}$, $\overline{8}$, $\overline{9}$, $\overline{10}$, $\overline{11}$. Among those $\overline{1}$, $\overline{5}$, $\overline{7}$, $\overline{11}$ are invertible, so they are divisors of any element. Also, $\overline{2} \cdot \overline{3} = \overline{6}$, $\overline{9} \cdot \overline{10} = \overline{6}$, $\overline{6} \cdot \overline{1} = \overline{6}$, so the only elements that aren't obviously divisors are $\overline{0}$, $\overline{4}$, and $\overline{8}$. Any multiple of these elements is one of these elements again, since these are remainders of integers from $4\mathbb{Z}$, and a homomorphic image of an ideal is an ideal. Therefore, these elements are not divisors of $\overline{6}$, and the answer is $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{5}$, $\overline{6}$, $\overline{7}$, $\overline{9}$, $\overline{10}$, $\overline{11}$.

(b) By definition of a greatest common divisor, d_1 is a divisor of d_2 and d_2 is a divisor of d_1 , so by previous question (1c) they are associates.

3. Clearly, the set of all combinations of ax + by is closed under sums and multiplication by any other element: $(ax_1 + by_1) + (ax_2 + by_2) = a(x_1 + x_2) + b(y_1 + y_2)$, (ax + by)r = a(xr) + b(yr), so that set is an ideal. Since R is a PID, that ideal is generated by one element c. Since $a = a \cdot 1 + b \cdot 0$ and $b = a \cdot 0 + b \cdot 1$, c is a common divisor of a and b. Also, c = ap + bq for some p and q, so if d is a common divisor of a and b, we can factor it out and conclude that $d \mid c$. Therefore, c is a greatest common divisor.

4. The set of all multiples is a square lattice generated by the vectors (2, 1) and (-1, 2). Clearly, $z_1 + (2 + i)\mathbb{Z}[i] = z_2 + (2 + i)\mathbb{Z}[i]$ if and only if $z_1 - z_2$ differ by a vector from that lattice, which means that for representatives of cosets we can take 0 and all points strictly inside one of the squares. By inspection, there are exactly 4 points inside one of each square, so the quotient ring consists of 5 elements.