
MA2215: Fields, rings, and modules
Homework problems due on October 29, 2012

1. (a) Of course, if a · b = 1 in Z/12Z, we have ab = 1 + 12k in Z, which immediately
shows that a can only be invertible if a is coprime to 12, and all these elements are invertible.
Therefore the answer is 1, 5, 7, 11.

(b) No. If 8 · a = 9 in Z/12Z, we have 8a = 9 + 12k in Z, so 9 = 8a − 12k is even, a
contradiction. Therefore, 9 is not even a multiple of 8, let alone associate.

(c) Suppose that b = ac and a = bd, where c, d ∈ R. We have b = ac = bdc, so we
conclude that either b = 0 or 1 = dc since R is an integral domain, and we can cancel nonzero
factors. If b = 0, then a = bd = 0, and a = b, so they are associates. Otherwise, 1 = dc, so
c, d ∈ R×, and so a and b are associates.

2. (a) The elements of our ring are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Among those 1, 5,
7, 11 are invertible, so they are divisors of any element. Also, 2 · 3 = 6, 9 · 10 = 6, 6 · 1 = 6,
so the only elements that aren’t obviously divisors are 0, 4, and 8. Any multiple of these
elements is one of these elements again, since these are remainders of integers from 4Z, and
a homomorphic image of an ideal is an ideal. Therefore, these elements are not divisors of 6,
and the answer is 1, 2, 3, 5, 6, 7, 9, 10, 11.

(b) By definition of a greatest common divisor, d1 is a divisor of d2 and d2 is a divisor of
d1, so by previous question (1c) they are associates.

3. Clearly, the set of all combinations of ax + by is closed under sums and multi-
plication by any other element: (ax1 + by1) + (ax2 + by2) = a(x1 + x2) + b(y1 + y2),
(ax + by)r = a(xr) + b(yr), so that set is an ideal. Since R is a PID, that ideal is gen-
erated by one element c. Since a = a · 1 + b · 0 and b = a · 0 + b · 1, c is a common divisor
of a and b. Also, c = ap+ bq for some p and q, so if d is a common divisor of a and b, we
can factor it out and conclude that d | c. Therefore, c is a greatest common divisor.

4. The set of all multiples is a square lattice generated by the vectors (2, 1) and (−1, 2).
Clearly, z1 + (2 + i)Z[i] = z2 + (2 + i)Z[i] if and only if z1 − z2 differ by a vector from that
lattice, which means that for representatives of cosets we can take 0 and all points strictly
inside one of the squares. By inspection, there are exactly 4 points inside one of each square,
so the quotient ring consists of 5 elements.


