MA2215: Fields, rings, and modules
Homework problems due on October 29, 2012

1. (a) Of course, if $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$ in $\mathbb{Z} / 12 \mathbb{Z}$, we have $\mathrm{ab}=1+12 \mathrm{k}$ in \mathbb{Z}, which immediately shows that a can only be invertible if a is coprime to 12 , and all these elements are invertible. Therefore the answer is $\overline{1}, \overline{5}, \overline{7}, \overline{11}$.
(b) No. If $\overline{8} \cdot \bar{a}=\overline{9}$ in $\mathbb{Z} / 12 \mathbb{Z}$, we have $8 a=9+12 k$ in \mathbb{Z}, so $9=8 a-12 k$ is even, a contradiction. Therefore, $\overline{9}$ is not even a multiple of $\overline{8}$, let alone associate.
(c) Suppose that $b=a c$ and $a=b d$, where $c, d \in R$. We have $b=a c=b d c$, so we conclude that either $b=0$ or $1=d c$ since R is an integral domain, and we can cancel nonzero factors. If $b=0$, then $a=b d=0$, and $a=b$, so they are associates. Otherwise, $1=d c$, so $c, d \in R^{\times}$, and so a and b are associates.
2. (a) The elements of our ring are $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}$. Among those $\overline{1}, \overline{5}$, $\overline{7}, \overline{11}$ are invertible, so they are divisors of any element. Also, $\overline{2} \cdot \overline{3}=\overline{6}, \overline{9} \cdot \overline{10}=\overline{6}, \overline{6} \cdot \overline{1}=\overline{6}$, so the only elements that aren't obviously divisors are $\overline{0}, \overline{4}$, and $\overline{8}$. Any multiple of these elements is one of these elements again, since these are remainders of integers from $4 \mathbb{Z}$, and a homomorphic image of an ideal is an ideal. Therefore, these elements are not divisors of $\overline{6}$, and the answer is $\overline{1}, \overline{2}, \overline{3}, \overline{5}, \overline{6}, \overline{7}, \overline{9}, \overline{10}, \overline{11}$.
(b) By definition of a greatest common divisor, d_{1} is a divisor of d_{2} and d_{2} is a divisor of d_{1}, so by previous question (1c) they are associates.
3. Clearly, the set of all combinations of $a x+b y$ is closed under sums and multiplication by any other element: $\left(a x_{1}+b y_{1}\right)+\left(a x_{2}+b y_{2}\right)=a\left(x_{1}+x_{2}\right)+b\left(y_{1}+y_{2}\right)$, $(a x+b y) r=a(x r)+b(y r)$, so that set is an ideal. Since R is a PID, that ideal is generated by one element c. Since $a=a \cdot 1+b \cdot 0$ and $b=a \cdot 0+b \cdot 1, c$ is a common divisor of a and b. Also, $c=a p+b q$ for some p and q, so if d is a common divisor of a and b, we can factor it out and conclude that $\mathrm{d} \mid \mathrm{c}$. Therefore, c is a greatest common divisor.
4. The set of all multiples is a square lattice generated by the vectors $(2,1)$ and $(-1,2)$. Clearly, $z_{1}+(2+i) \mathbb{Z}[i]=z_{2}+(2+i) \mathbb{Z}[i]$ if and only if $z_{1}-z_{2}$ differ by a vector from that lattice, which means that for representatives of cosets we can take 0 and all points strictly inside one of the squares. By inspection, there are exactly 4 points inside one of each square, so the quotient ring consists of 5 elements.
