MA2215: Fields, rings, and modules
Homework problems due on November 12, 2012

1. (a) The quotient of $\mathbb{Z}[t]$ by the ideal generated by $t^{2}+1$ is manifestly isomorphic to $\mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is not a field, the ideal in question is not maximal.
(b) The quotient of $\mathbb{Z}[t]$ by the ideal generated by t and 2 is manifestly isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$, which is a field, so the ideal is maximal.
2. The the quotient ring $\mathbb{Q}[t] /\left(t^{2}+1\right) \mathbb{Q}[t]$ is clearly isomorphic to $\mathbb{Q}[i]=\{x+y i: x, y \in \mathbb{Q}\}$. In the field of fractions of Gaussian integers, we have, for $(c, d) \neq(0,0), \frac{a+b i}{c+d i}=\frac{(a+b i)(c-d i)}{c^{2}+d^{2}}$, and that defines a homomorphism of that field into $\mathbb{Q}[i]$. That homomorphism is injective, since fields have no ideals that could be kernels of homomorphisms, and is surjective, since already the fractions $\frac{\mathrm{a}+\mathrm{bi}}{\mathrm{c}}$ run over all of $\mathbb{Q}[i]$.
3. Let us assume that we have $a \neq 0$ such that $a b$ is different from 1 for all b. Then among the elements $a x$, where x runs over R, there will be two equal elements, since the total number of elements is finite, and we skipped 1 . Then $a x=a x^{\prime}$, but for $a \neq 0$ and $x \neq x^{\prime}$ that is impossible in an integral domain.
4. Since this field, considered just with addition as an operation, is a group of order 4, we may only have $1+1=0$ or $1+1+1+1=0$: the order of an element divides the order of the group by Lagrange's theorem. Also, $1+1+1+1=(1+1)(1+1)$, so if $1+1+1+1=0$, we must have $1+1=0$, because a field has no zero divisors.
5. We already proved that $1+1=0$. Let us take an element $a \neq 0,1$ in our field. The remaining fourth remaining element of the field is then $1+a$. Since we can multiply elements too, we should have $a^{2}=0$, or $a^{2}=1$, or $a^{2}=a$, or $a^{2}=1+a$. The first three assumptions would lead to zero divisors (since $a^{2}-1=(a-1)(a+1)=(a-1)^{2}$ and $a^{2}-a=a(a-1)$), so we have $a^{2}=1+a$, or $a^{2}+a+1=0$. Thus, we have a homomorphism from $\mathbb{F}_{2}[t] /\left(t^{2}+t+1\right) \mathbb{F}_{2}[t]$ to our field (that maps t to a), and this homomorphism is an isomorphism since it is surjective, and $\mathbb{F}_{2}[\mathrm{t}] /\left(\mathrm{t}^{2}+\mathrm{t}+1\right) \mathbb{F}_{2}[\mathrm{t}]$ is a field (because $\mathrm{t}^{2}+\mathrm{t}+1$ is irreducible) so the injectivity is automatic.
6. Indeed, looking at the additive group we conclude that $1+1+1=0$ but $1+1 \neq 0$, so the natural map from \mathbb{F}_{3} to our field that maps 1 to 1 is an isomorphism.
7. Since this field, considered just with addition as an operation, is a group of order 9, we may only have $1+1+1=0$ or $\underbrace{1+\ldots+1}_{9 \text { tid }}=0$: the order of an element divides the order of the group

9 times
by Lagrange's theorem. Also, $\underbrace{1+\ldots+1}_{9 \text { times }}=(1+1+1)(1+1+1)$, and the argument with zero
divisors applies again.
8. We already proved that $1+1=0$. Let us take an element $a \neq 0,1$ in our field. Then the nine elements of the field are $0, \pm 1, \pm a, \pm 1 \pm a$. Therefore a^{2} is equal to one of these elements. From Assignment 4, we know irreducible quadratic polynomials over \mathbb{F}_{3}, which leads us to a conclusion that we can only have $a^{2}+a-1=0, a^{2}-a-1=0$, or $a^{2}+1=0$. (Otherwise, our field will have zero divisors.) In the latter case, we found root of -1 already. If $a^{2} \pm a-1=0$, we use the fact that $2=1+1=-1$ in our field, so $a^{2} \mp 2 a-1=0$, therefore $(a \mp 1)^{2}-2=0$, and $(a \mp 1)^{2}+1=0$, and we have a square root of -1 again. Thus, we have a homomorphism from $\mathbb{F}_{3}[t] /\left(t^{2}+1\right) \mathbb{F}_{3}[t]$ to our field (that maps t to a or $a \pm 1$ depending on which case we are considering), and this homomorphism is an isomorphism since it is surjective, and $\mathbb{F}_{3}[t] /\left(t^{2}+1\right) \mathbb{F}_{3}[t]$ is a field (because $t^{2}+1$ is irreducible) so the injectivity is automatic.

