
MA2215: Fields, rings, and modules
Homework problems due on November 12, 2012

1. (a) The quotient of Z[t] by the ideal generated by t2 + 1 is manifestly isomorphic to Z[i].
Since Z[i] is not a field, the ideal in question is not maximal.

(b) The quotient of Z[t] by the ideal generated by t and 2 is manifestly isomorphic to Z/2Z,
which is a field, so the ideal is maximal.

2. The the quotient ring Q[t]/(t2 + 1)Q[t] is clearly isomorphic to Q[i] = {x + yi : x, y ∈ Q}.

In the field of fractions of Gaussian integers, we have, for (c, d) 6= (0, 0), a+bi
c+di

= (a+bi)(c−di)
c2+d2 ,

and that defines a homomorphism of that field into Q[i]. That homomorphism is injective, since
fields have no ideals that could be kernels of homomorphisms, and is surjective, since already the
fractions a+bi

c
run over all of Q[i].

3. Let us assume that we have a 6= 0 such that ab is different from 1 for all b. Then among
the elements ax, where x runs over R, there will be two equal elements, since the total number of
elements is finite, and we skipped 1. Then ax = ax ′, but for a 6= 0 and x 6= x ′ that is impossible
in an integral domain.

4. Since this field, considered just with addition as an operation, is a group of order 4, we may
only have 1 + 1 = 0 or 1 + 1 + 1 + 1 = 0: the order of an element divides the order of the group
by Lagrange’s theorem. Also, 1+ 1+ 1+ 1 = (1+ 1)(1+ 1), so if 1+ 1+ 1+ 1 = 0, we must have
1+ 1 = 0, because a field has no zero divisors.

5. We already proved that 1 + 1 = 0. Let us take an element a 6= 0, 1 in our field. The
remaining fourth remaining element of the field is then 1+a. Since we can multiply elements too,
we should have a2 = 0, or a2 = 1, or a2 = a, or a2 = 1 + a. The first three assumptions would
lead to zero divisors (since a2 − 1 = (a− 1)(a+ 1) = (a− 1)2 and a2 − a = a(a− 1)), so we have
a2 = 1 + a, or a2 + a + 1 = 0. Thus, we have a homomorphism from F2[t]/(t

2 + t + 1)F2[t] to
our field (that maps t to a), and this homomorphism is an isomorphism since it is surjective, and
F2[t]/(t

2 + t+ 1)F2[t] is a field (because t2 + t+ 1 is irreducible) so the injectivity is automatic.
6. Indeed, looking at the additive group we conclude that 1 + 1 + 1 = 0 but 1 + 1 6= 0, so the

natural map from F3 to our field that maps 1 to 1 is an isomorphism.
7. Since this field, considered just with addition as an operation, is a group of order 9, we may

only have 1+ 1+ 1 = 0 or 1+ . . .+ 1︸ ︷︷ ︸
9 times

= 0: the order of an element divides the order of the group

by Lagrange’s theorem. Also, 1+ . . .+ 1︸ ︷︷ ︸
9 times

= (1 + 1 + 1)(1 + 1 + 1), and the argument with zero

divisors applies again.
8. We already proved that 1+1 = 0. Let us take an element a 6= 0, 1 in our field. Then the nine

elements of the field are 0,±1,±a,±1± a. Therefore a2 is equal to one of these elements. From
Assignment 4, we know irreducible quadratic polynomials over F3, which leads us to a conclusion
that we can only have a2+a−1 = 0, a2−a−1 = 0, or a2+1 = 0. (Otherwise, our field will have
zero divisors.) In the latter case, we found root of −1 already. If a2 ± a − 1 = 0, we use the fact
that 2 = 1+1 = −1 in our field, so a2∓2a−1 = 0, therefore (a∓1)2−2 = 0, and (a∓1)2+1 = 0,
and we have a square root of −1 again. Thus, we have a homomorphism from F3[t]/(t

2 + 1)F3[t]
to our field (that maps t to a or a ± 1 depending on which case we are considering), and this
homomorphism is an isomorphism since it is surjective, and F3[t]/(t

2 + 1)F3[t] is a field (because
t2 + 1 is irreducible) so the injectivity is automatic.


