MA2215: Fields, rings, and modules
Homework problems due on November 19, 2012

1. Clearly, it is enough to check it for $f(x)=x^{k}$, since every polynomial is a linear combination of these, and if $x-a$ divides each of the summands, it divides the whole sum too. But $x^{k}-a^{k}=(x-a)\left(x^{k-1}+x^{k-2} a+\ldots+x a^{k-2}+a^{k-1}\right)$. The statement about the roots is clear: $f(x)=q(x)(x-a)+f(a)$, so if $f(a)=0$, then $f(x)=q(x)(x-a)$. The other way round, $f(x)=q(x)(x-a)$, we substitute $x=a$ and conclude $f(a)=0$.
2. (a) Taking common factors out, we may assume that $c(f)=1$. By previous question, $x-\frac{p}{q}$ divides $f(x)$ in $\mathbb{Q}[x]$. In $\mathbb{Q}[x]$, we can also say that $q x-p$ divides $f(x)$. As proved in class, this implies that $q x-p$ divides $f(x)$ in $\mathbb{Z}[x]$. Comparing the leading terms and the constant terms, we conclude that indeed p is a divisor of the constant term of this polynomial, and q is a divisor of its leading coefficient.
(b) This generalisation is trivial: the argument only uses Gauss lemma which is true in that generality.
3. (a) Let us prove by induction on n that there exist a polynomial $f_{n}(x) \in \mathbb{Z}[x]$ of degree n with the leading coefficient 2^{n-1} and a polynomial $g_{n}(x) \in \mathbb{Z}[x]$ of degree $n-1$ with the leading coefficient 2^{n-1} for which $\cos (n \alpha)=f_{n}(\cos \alpha)$ and $\sin (n \alpha)=\sin \alpha g_{n}(\cos \alpha)$. For $n=1$ we take $f_{1}(x)=x$ and $g_{1}(x)=1$, and the statement is trivial. Let us assume that we know this statement for some n. Since $\cos ((n+1) \alpha)=\cos (n \alpha+\alpha)=\cos (n \alpha) \cos \alpha-\sin (n \alpha) \sin \alpha$, we have $\cos ((n+1) \alpha)=f_{n}(\cos \alpha) \cos \alpha-g_{n}(\cos \alpha) \sin ^{2} \alpha=f_{n}(\cos \alpha) \cos \alpha-g_{n}(\cos \alpha)\left(1-\cos ^{2} \alpha\right)$, and we can put $f_{n+1}(x)=x f_{n}(x)-g_{n}(x)\left(1-x^{2}\right)$, which is a polynomial of degree $n+1$ in $\cos \alpha$ with the leading coefficient 2^{n}. Similarly, since

$$
\sin ((n+1) \alpha)=\sin (n \alpha+\alpha)=\sin (n \alpha) \cos \alpha+\sin (n \alpha) \cos \alpha
$$

we have

$$
\sin ((n+1) \alpha)=g_{n}(\cos \alpha) \sin \alpha \cos \alpha+f_{n}(\cos \alpha) \sin \alpha=\sin \alpha\left(g_{n}(\cos \alpha) \cos \alpha+f_{n}(\cos \alpha)\right)
$$

and we can put $g_{n+1}(x)=x g_{n}(x)+f_{n}(x)$, which is a polynomial of degree n with the leading coefficient 2^{n}.
(b) If $\arccos \frac{3}{5}=\frac{k}{l} \pi$, we have $\cos \left(2 l \arccos \frac{3}{5}\right)=1$, so $3 / 5$ is a root of the polynomial with integer coefficients and the leading coefficient $2^{2 l-1}$, which contradicts the second question from this sheet.
4. The Eisenstein criterion applies with $p=3$.
5. If $x^{105}-9=g(x) h(x)$ in $\mathbb{Z}[x]$, then some of the complex roots of $x^{105}-9$ are roots of $g(x)$, and others are roots of $h(x)$. The constant term of $g(x)$ is the product of those roots, and its absolute value is the product of absolute values, which are all equal to $\sqrt[105]{9}$. Clearly, the smallest power of that number that is an integer is 105 , so $\mathrm{g}(\mathrm{x})$ cannot be both of smaller degree and have integer coefficients.
6. (a) Because of the second question of this problem sheet, integer roots of $f(x)$ can only be ± 1 and $\pm p$. Moreover, 1 and p are not roots since all the coefficients are positive, -1 is not a root since $f(-1)=\frac{p-1}{2}$ by direct inspection, and p is not a root, since $f(p) \equiv p+p(p-1)+p^{2}(p-2) \equiv-p^{2}\left(\bmod p^{3}\right)$.
(b) Indeed,
$(x-1) f(x)=x^{p}+2 x^{p-1}+3 x^{p-2}+\ldots+(p-1) x^{2}+p x-x^{p-1}-2 x^{p-2}-3 x^{p-3}+\ldots-(p-1) x-p$
which is equal to $x^{p}+x^{p-1}+\ldots+x-p$, and $(x-1)^{2} f(x)=x^{p+1}-(p+1) x+p$.
(c) Considering $f(x+1)$ modulo p, we obtain

$$
\frac{(x+1)^{p+1}-(p+1)(x+1)+p}{x^{2}}=\sum_{k=2}^{p+1}\binom{p+1}{k} x^{k-2} \equiv x^{p+1}+x^{p} \quad(\bmod p)
$$

since $\binom{p+1}{k}=\frac{(p+1)!}{k!(p+1-k)!}$, which is divisible by p unless $k=0,1, p, p+1$. The terms with $k=0,1$ are missing anyway, and the terms with $k=p, p+1$ give x^{p} and x^{p+1} respectively. If $f(x)=g(x) h(x)$, we have $f(x+1)=g(x+1) h(x+1)$, and modulo p we have $x^{p+1}+x^{p}=g_{1}(x) h_{1}(x)$, where $g_{1}(x)$ and $h_{1}(x)$ are the modulo p representatives of $g(x+1)$ and $h(x+1)$. Since the constant term of $f(x+1)$ is $\binom{p+1}{2}=\frac{p(p+1)}{2}$, it is not divisible by p^{2}, so one of the constant terms of $g_{1}(x)$ and $h_{1}(x)$ is not equal to zero. The respective polynomial then must be of degree 1 , since the product $g_{1}(x) h_{1}(x)$ has all roots but one equal to zero. Finally, we know that our polynomial has no integer roots, so it cannot have factors of degree 1 .

