
MA2215: Fields, rings, and modules
Homework problems due on November 19, 2012

1. Clearly, it is enough to check it for f(x) = xk, since every polynomial is a linear
combination of these, and if x − a divides each of the summands, it divides the whole sum
too. But xk − ak = (x − a)(xk−1 + xk−2a + . . . + xak−2 + ak−1). The statement about the
roots is clear: f(x) = q(x)(x − a) + f(a), so if f(a) = 0, then f(x) = q(x)(x − a). The other
way round, f(x) = q(x)(x− a), we substitute x = a and conclude f(a) = 0.

2. (a) Taking common factors out, we may assume that c(f) = 1. By previous question,
x− p

q divides f(x) in Q[x]. In Q[x], we can also say that qx−p divides f(x). As proved in class,
this implies that qx− p divides f(x) in Z[x]. Comparing the leading terms and the constant
terms, we conclude that indeed p is a divisor of the constant term of this polynomial, and q
is a divisor of its leading coefficient.

(b) This generalisation is trivial: the argument only uses Gauss lemma which is true in
that generality.

3. (a) Let us prove by induction on n that there exist a polynomial fn(x) ∈ Z[x] of degree n
with the leading coefficient 2n−1 and a polynomial gn(x) ∈ Z[x] of degree n−1 with the leading
coefficient 2n−1 for which cos(nα) = fn(cosα) and sin(nα) = sinαgn(cosα). For n = 1 we
take f1(x) = x and g1(x) = 1, and the statement is trivial. Let us assume that we know this
statement for some n. Since cos((n+ 1)α) = cos(nα+α) = cos(nα) cosα− sin(nα) sinα, we
have cos((n+1)α) = fn(cosα) cosα−gn(cosα) sin2 α = fn(cosα) cosα−gn(cosα)(1−cos2 α),
and we can put fn+1(x) = xfn(x) − gn(x)(1 − x

2), which is a polynomial of degree n + 1 in
cosα with the leading coefficient 2n. Similarly, since

sin((n+ 1)α) = sin(nα+ α) = sin(nα) cosα+ sin(nα) cosα,

we have

sin((n+ 1)α) = gn(cosα) sinα cosα+ fn(cosα) sinα = sinα(gn(cosα) cosα+ fn(cosα)),

and we can put gn+1(x) = xgn(x)+ fn(x), which is a polynomial of degree n with the leading
coefficient 2n.

(b) If arccos 35 =
k
lπ, we have cos(2l arccos 35) = 1, so 3/5 is a root of the polynomial with

integer coefficients and the leading coefficient 22l−1, which contradicts the second question
from this sheet.

4. The Eisenstein criterion applies with p = 3.
5. If x105 − 9 = g(x)h(x) in Z[x], then some of the complex roots of x105 − 9 are roots of

g(x), and others are roots of h(x). The constant term of g(x) is the product of those roots,
and its absolute value is the product of absolute values, which are all equal to 105

√
9. Clearly,

the smallest power of that number that is an integer is 105, so g(x) cannot be both of smaller
degree and have integer coefficients.

6. (a) Because of the second question of this problem sheet, integer roots of f(x) can
only be ±1 and ±p. Moreover, 1 and p are not roots since all the coefficients are posi-
tive, −1 is not a root since f(−1) = p−1

2 by direct inspection, and p is not a root, since
f(p) ≡ p+ p(p− 1) + p2(p− 2) ≡ −p2 (mod p3).

(b) Indeed,

(x−1)f(x) = xp+2xp−1+3xp−2+ . . .+(p−1)x2+px−xp−1−2xp−2−3xp−3+ . . .−(p−1)x−p



which is equal to xp + xp−1 + . . .+ x− p, and (x− 1)2f(x) = xp+1 − (p+ 1)x+ p.
(c) Considering f(x+ 1) modulo p, we obtain

(x+ 1)p+1 − (p+ 1)(x+ 1) + p

x2
=

p+1∑
k=2

(
p+ 1

k

)
xk−2 ≡ xp+1 + xp (mod p),

since
(
p+1
k

)
= (p+1)!

k!(p+1−k)! , which is divisible by p unless k = 0, 1, p, p + 1. The terms with

k = 0, 1 are missing anyway, and the terms with k = p, p + 1 give xp and xp+1 respec-
tively. If f(x) = g(x)h(x), we have f(x + 1) = g(x + 1)h(x + 1), and modulo p we have
xp+1 + xp = g1(x)h1(x), where g1(x) and h1(x) are the modulo p representatives of g(x + 1)

and h(x + 1). Since the constant term of f(x + 1) is
(
p+1
2

)
= p(p+1)

2 , it is not divisible by
p2, so one of the constant terms of g1(x) and h1(x) is not equal to zero. The respective
polynomial then must be of degree 1, since the product g1(x)h1(x) has all roots but one equal
to zero. Finally, we know that our polynomial has no integer roots, so it cannot have factors
of degree 1.


