MA2215: Fields, rings, and modules
Homework problems due on November 26, 2012

1. Clearly $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \supseteq \mathbb{Q}(\sqrt{2}+\sqrt{3})$. To show the opposite inclusion, note that clearly $\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}$, so
$\sqrt{3}=\frac{1}{2}\left(\sqrt{3}+\sqrt{2}+\frac{1}{\sqrt{3}+\sqrt{2}}\right) \in \mathbb{Q}(\sqrt{2}+\sqrt{3}), \sqrt{2}=\frac{1}{2}\left(\sqrt{3}+\sqrt{2}-\frac{1}{\sqrt{3}+\sqrt{2}}\right) \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$,
so $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Consequently, $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
2. Note that

$$
\begin{aligned}
& (x-\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x+\sqrt{2}+\sqrt{3})= \\
& \quad=\left((x-\sqrt{2})^{2}-3\right)\left((x+\sqrt{2})^{2}-3\right)=\left(x^{2}-1\right)^{2}-8 x^{2}=x^{4}-10 x^{2}+1
\end{aligned}
$$

so $f(x)=x^{4}-10 x^{2}+1$ works. Note that each factor of that polynomial is a product of some of its four linear factors, and by inspection none of those products has rational coefficients.
3. The dimension of $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ as a \mathbb{Q}-vector space is equal to the degree of the minimum polynomial of $\sqrt{2}+\sqrt{3}$, which is equal to 4 since we know an irreducible polynomial of degree 4 with this root. If $\sqrt{3}$ were an element of $\mathbb{Q}(\sqrt{2})$, we would have $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})$ which is a field extension of degree 2 , a contradiction.
4. Note that since the group \mathbb{F}_{9}^{\times}is of order 8 , the order of each element in it is $1,2,4$, or 8 , so it is enough to check that there are elements whose order is not 1,2 , or 4 . For the element $1+\mathfrak{i}$, we have $(1+\mathfrak{i})^{2}=2 \mathfrak{i}=-\mathfrak{i}$, and $(1+\mathfrak{i})^{4}=(-\mathfrak{i})^{2}=-1$, so $1+\mathfrak{i}$ is of order 8 . Hence all powers $(1+i)^{k}, 0 \leqslant k \leqslant 7$ are distinct, and this element generates \mathbb{F}_{9}^{\times}, which then is a cyclic group.
5. Let us take an element α of K which is not in F. Clearly, $F(\alpha) \subseteq K$. Hence by tower law we have $[K: F]=[K: F(\alpha)][F(\alpha): F]$. Since $[K: F]$ is a prime number, one of the factors is equal to 1 . But by construction $[F(\alpha): F]>1$, so $[K: F(\alpha)]=1$, hence $K=F(\alpha)$.
6. Since α is a root of $\chi^{2}-\alpha^{2} \in F\left(\alpha^{2}\right)[x]$, we have $\left[F(\alpha): F\left(\alpha^{2}\right)\right] \leqslant 2$. Hence if $F(\alpha) \neq F\left(\alpha^{2}\right)$, we have $\left[F(\alpha): F\left(\alpha^{2}\right)\right]=2$. But then by tower law we have $[F(\alpha): F]=\left[F(\alpha): F\left(\alpha^{2}\right)\right]\left[F\left(\alpha^{2}\right): F\right]$ is even, which contradicts the fact that α is of odd degree.

