MA2215: Fields, rings, and modules
Homework problems due on December 3, 2012

1. Clearly, $x^{4}-4 x^{2}-5=\left(x^{2}+1\right)\left(x^{2}-5\right)$, so the splitting field is $\mathbb{Q}(i, \sqrt{5})$. Furthermore, $\mathbb{Q}(\sqrt{5})$ is a subfield of \mathbb{R} so it does not contain \mathfrak{i}, therefore $[\mathbb{Q}(i, \sqrt{5}): \mathbb{Q}(\sqrt{5})]>1$, so $[\mathbb{Q}(i, \sqrt{5}): \mathbb{Q}(\sqrt{5})]=2$, and $[\mathbb{Q}(i, \sqrt{5}): \mathbb{Q}]=4$ by Tower Law.
2. Since $x^{4}-4 x^{2}-5=\left(x^{2}+1\right)\left(x^{2}-5\right)$, the splitting field over \mathbb{R} is $\mathbb{R}(i)=\mathbb{C}$ of degree 2 , and the degree over \mathbb{C} is 1 .
3. First of all, $x^{11}-5$ is irreducible (Eisenstein), so $[\mathbb{Q}(\sqrt[11]{5}): \mathbb{Q}]=11$. Second, clearly the complex roots of our polynomial are obtained from $\sqrt[11]{5}$ multiplying it by all 11th roots of 1 . Obviolusly $x^{11}-1=(x-1)\left(x^{10}+x^{9}+\ldots+x+1\right)$. Since 11 is a prime, $x^{10}+x^{9}+\ldots+x+1$ is irreducible (proved in class), so the splitting field of $x^{11}-1$ is of degree 10 over \mathbb{Q}. Altogether, since we have a subfield of degree 11 and a subfield of degree 10 (and they together generate everything), the total degree is 110 .
4. Over \mathbb{F}_{3} we have $x^{8}+2=x^{8}-1$, so the splitting field of $x^{8}+2$ is the same as the splitting field of $x^{8}-1$ is the same as the splitting field of $x\left(x^{8}-1\right)=x^{9}-x$. The latter is clearly \mathbb{F}_{9}, as we know from class.
5. (a) We have $(x+1)^{p}-x-1 \equiv\left(x^{p}+1\right)-x-1=x^{p}-x(\bmod p)$ since all middle binomial coefficients in $(x+1)^{p}$ are divisible by p.
(b) We have $f(x)=f(x+1)$, so $f(x+1)=f(x+2)$ etc. Let $a=f(0)$. The equation $f(x)=a$ has all elements of $\mathbb{F}_{\mathfrak{p}}$ as roots, so its degree should be at least p.
(c) From the first part of this problem, $g(x)=g(x+1)$. Suppose that $g(x)$ has a nontrivial factorisation into irreducibles. Clearly, for each of those irreducibles $h(x)$ the element $h(x+1)$ is also irreducible, so it has to appear in the factorisation. Hence we either have $h(x)=h(x+1)$ or it is a factor different from $h(x)$. It is impossible to have $h(x)=h(x+1)$, since all factors are of degree less than p. Suppose that there are repetitions among $h(x), h(x+1), \ldots$, $h(x+p-1)$. Then $h(x)=h(x+l)$, and since integers modulo p form a field, there exists m such that $l m \equiv 1(\bmod p)$, hence $h(x)=h(x+l)=h(x+2 l)=\cdots=h(x+l m)=h(x+1)$, a contradiction. Therefore all these polynomials are different irreducible factors of $g(x)$. The latter would mean that $g(x)$ factorises into linear factors, hence has roots. But for each $a \in \mathbb{F}_{\mathfrak{p}}$ we have $g(a)=-1$, a contradiction.
