MA2215: Fields, rings, and modules Homework problems due on October 1, 2012

1. Explain why $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[t]$ are rings. Do they have unit elements?

2. Show that in the ring of integers, ab = ac implies b = c whenever a is not equal to zero. Give an example of a ring where this statement does not hold.

3. Show that the subset of $\mathbb{Z}[t]$ consisting of all polynomials f(t) such that f(1) = 0 is a subring of $\mathbb{Z}[t]$. Show the same for the subset of $\mathbb{Z}[t]$ consisting of all polynomials f(t) such that f(1) = f'(1) = 0. Do these subrings have unit elements?

4. Show that for any ring R square R-valued matrices of the given size (notation: $Mat_n(R)$) form a ring with respect to matrix multiplication.

5. Show that $Mat_n(R)$ has a unit element if and only if R has a unit element. (*Hint:* if A

is the unit element of $\operatorname{Mat}_n(R)$, we have AX = XA = X for matrices $X = \begin{pmatrix} r & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 0 \end{pmatrix}$,

where $r \in R$.)