MA2215: Fields, rings, and modules Homework problems due on October 1, 2012

1. Explain why $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[t]$ are rings. Do they have unit elements?
2. Show that in the ring of integers, $a b=a c$ implies $b=c$ whenever a is not equal to zero. Give an example of a ring where this statement does not hold.
3. Show that the subset of $\mathbb{Z}[t]$ consisting of all polynomials $f(t)$ such that $f(1)=0$ is a subring of $\mathbb{Z}[t]$. Show the same for the subset of $\mathbb{Z}[t]$ consisting of all polynomials $f(t)$ such that $f(1)=f^{\prime}(1)=0$. Do these subrings have unit elements?
4. Show that for any ring R square R-valued matrices of the given size (notation: $\operatorname{Mat}_{n}(R)$) form a ring with respect to matrix multiplication.
5. Show that $\operatorname{Mat}_{n}(R)$ has a unit element if and only if R has a unit element. (Hint: if A
is the unit element of $\operatorname{Mat}_{n}(R)$, we have $A X=X A=X$ for matrices $X=\left(\begin{array}{cccc}r & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & 0\end{array}\right)$,
where $r \in R$.)
