MA2215: Fields, rings, and modules Homework problems due on October 8, 2012

1. (a) Describe all ring homomorphisms from $\mathbb{Z} / 3 \mathbb{Z}$ to $\mathbb{Z} / 3 \mathbb{Z}$.
(b) Describe all ring homomorphisms from $\mathbb{Z} / 3 \mathbb{Z}$ to $\mathbb{Z} / 2 \mathbb{Z}$.
2. In class, we checked that $\mathbb{R}[x] /\left(x^{2}+1\right) \mathbb{R}[x] \simeq \mathbb{C}$. Show that $\mathbb{R}[x] /\left(x^{2}-1\right) \mathbb{R}[x] \simeq \mathbb{R} \times \mathbb{R}$. (Hint: consider the map between these rings that takes the coset of $f(x)$ modulo the ideal $\left(x^{2}-1\right) \mathbb{R}[x]$ to the pair of numbers $(f(1), f(-1))$. Show that this map is well defined and gives an isomorphism.)
3. (a) Show that every quotient ring of a commutative ring is commutative. (b) Show that every quotient ring of a ring with unit has a unit.
4. Let R be the set of all triangular 2×2-matrices with integer entries,

$$
R=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{Z}\right\}
$$

Take $I=\left\{\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right): b \in \mathbb{Z}\right\}, S=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right): a, c \in \mathbb{Z}\right\}$. Show that I is an ideal of R, S is a subring but not an ideal, and that $S \simeq R / I$.

