MA2215: Fields, rings, and modules Homework problems due on October 15, 2012

1. Let R be a ring, and let I be an ideal of R. Show that $M a t_{n}(I)$ (matrices whose all entries are in I) is an ideal of $\operatorname{Mat}_{n}(R)$, and that

$$
\operatorname{Mat}_{n}(R) / \operatorname{Mat}_{n}(I) \simeq \operatorname{Mat}_{n}(R / I)
$$

Hint: Use the map $\varphi: \operatorname{Mat}_{n}(R) \rightarrow \operatorname{Mat}_{n}(R / I)$,

$$
\varphi\left(\left(a_{p q}\right)_{p, q=1, \ldots, n}\right)=\left(a_{p q}+I\right)_{p, q=1, \ldots, n} .
$$

2. Let R be a ring, and let I be an ideal of R. Show that $I[t]$ (polynomials in t whose coefficients are elements of I) is an ideal of $R[t]$, and that

$$
R[t] / I[t] \simeq(R / I)[t] .
$$

Hint: Use the map $\varphi: R[t] \rightarrow(R / I)[t]$,

$$
\varphi\left(a_{0}+a_{1} t+\ldots+a_{n} t^{n}\right)=\left(a_{0}+I\right)+\left(a_{1}+I\right) t+\ldots+\left(a_{n}+I\right) t^{n} .
$$

3. Let R be a ring, and let I be an ideal of R, and moreover let J be another ideal of R contained in I. Prove that

$$
(R / I) \simeq(R / J) /(I / J) .
$$

Hint: Use the map $\varphi: R / J \rightarrow R / I, \varphi(r+J)=r+I$.
4. In the ring $\mathbb{Z}[t]$, if we have $f(t) g(t)=0$, we can conclude that $f(t)=0$ or $g(t)=0$ (one way to see it is as follows: look at the leading coefficients of $f(t)$ and $g(t)$; if they are both nonzero, the leading coefficient of $f(t) g(t)$, being their product, is nonzero as well). Is this statement true for (a) $R=(\mathbb{Z} / 2 \mathbb{Z})[t]$? (b) $R=(\mathbb{Z} / 4 \mathbb{Z})[t]$? ($\mathbf{c}) \mathrm{R}=(\mathbb{Z} / 5 \mathbb{Z})[\mathrm{t}]$? (d) $R=\mathbb{Z}[t] /\left(t^{2}-1\right) \mathbb{Z}[t]$? (e) $R=\operatorname{Mat}_{2}(\mathbb{Z})$? Explain your answers.

