MA2215: Fields, rings, and modules Homework problems due on October 22, 2012

1. Prove the remaining part of Second Isomorphism Theorem: under the correspondence constructed in class, ideals of R containing I are in one-to-one correspondence with ideals of R/I.
2. Since $\mathbb{Z} / 3 \mathbb{Z}$ is clearly a field (the only nonzero elements $1=\overline{1}$ and $-1=\overline{2}$ are invertible), the ring of polynomials $(\mathbb{Z} / 3 \mathbb{Z})[t]$ is a Euclidean domain. Explain which of the following polynomials are irreducible: $\mathrm{t}, \mathrm{t}+1, \mathrm{t}-1, \mathrm{t}^{2}, \mathrm{t}^{2}+\mathrm{t}, \mathrm{t}^{2}+1, \mathrm{t}^{2}-1, \mathrm{t}^{2}-\mathrm{t}, \mathrm{t}^{2}-\mathrm{t}+1, \mathrm{t}^{2}-\mathrm{t}-1$, $\mathrm{t}^{2}+\mathrm{t}+1, \mathrm{t}^{2}+\mathrm{t}-1$.
3. Which of the Gaussian integers $13,3+4 \mathfrak{i}, 4+\mathfrak{i}, 5+3 i$ are irreducible in $\mathbb{Z}[i]$?
4. Find some greatest common divisor of Gaussian integers $13+33 i$ and $19+9 i$.
5. Find some greatest common divisor in $\mathbb{Q}[t]$ of polynomials $2 t^{3}-11 t^{2}+8 t+21$ and $2 t^{4}-7 t^{3}-2 t^{2}+5 t+7$.
