MA2215: Fields, rings, and modules Homework problems due on October 22, 2012

1. Prove the remaining part of Second Isomorphism Theorem: under the correspondence constructed in class, ideals of R containing I are in one-to-one correspondence with ideals of R/I.

2. Since $\mathbb{Z}/3\mathbb{Z}$ is clearly a field (the only nonzero elements $1 = \overline{1}$ and $-1 = \overline{2}$ are invertible), the ring of polynomials $(\mathbb{Z}/3\mathbb{Z})[t]$ is a Euclidean domain. Explain which of the following polynomials are irreducible: $t, t+1, t-1, t^2, t^2+t, t^2+1, t^2-1, t^2-t, t^2-t+1, t^2-t-1, t^2+t+1, t^2+t-1$.

3. Which of the Gaussian integers 13, 3 + 4i, 4 + i, 5 + 3i are irreducible in $\mathbb{Z}[i]$?

4. Find some greatest common divisor of Gaussian integers 13 + 33i and 19 + 9i.

5. Find some greatest common divisor in $\mathbb{Q}[t]$ of polynomials $2t^3 - 11t^2 + 8t + 21$ and $2t^4 - 7t^3 - 2t^2 + 5t + 7$.