MA2215: Fields, rings, and modules Homework problems due on October 29, 2012

1. (a) Describe invertible elements in $\mathbb{Z} / 12 \mathbb{Z}$.
(b) Are $\overline{8}$ and $\overline{9}$ associates in $\mathbb{Z} / 12 \mathbb{Z}$?
(c) Show that in an integral domain R, if $a \mid b$ and $b \mid a$, then a and b are associates.
2. (a) Which elements of $\mathbb{Z} / 12 \mathbb{Z}$ are divisors of $\overline{6}$?
(b) Let R be an integral domain, and assume that two elements a and b in R have a greatest common divisor. Show that if d_{1} and d_{2} are two greatest common divisors of a and b , then d_{1} and d_{2} are associates.
3. Let R be a principal ideal domain. Show that the set $(a, b):=\{a x+b y: x, y \in R\}$ is an ideal. Considering an element c that generates that ideal, show that two elements of R always have a greatest common divisor.
4. Plot on the plane the set of all multiples of the Gaussian integer $2+i$, and compute the number of elements in the factor ring $\mathbb{Z}[i] /(2+i) \mathbb{Z}[i]$.
