MA2215: Fields, rings, and modules Homework problems due on November 19, 2012

1. Let F be a field. Show that for every polynomial $f(x) \in F[x]$ and every $a \in F$ the polynomial x - a divides the polynomial f(x) - f(a). In particular, a is a root of f(x) if and only if x - a divides f(x).

2. (a) Let f(x) be a polynomial with integer coefficients. Assume that a rational number $\frac{p}{q}$ with coprime p and q is a root of that polynomial. Show that p is a divisor of the constant term of this polynomial, and q is a divisor of its leading coefficient.

(b) Explain how to generalise the previous result to an arbitrary UFD and its field of fractions.

3. (a) Using the formula for the cosine of the sum of two angles, demonstrate that $\cos(n\alpha)$ is a polynomial expression in $\cos \alpha$ with integer coefficients, with the leading coefficient 2^{n-1} .

(b) Show that $\arccos \frac{3}{5}$ is not a rational multiple of π .

4. Show that the polynomial x⁵ − 12x³ + 36x − 12 is irreducible in Q[x].
5. Show that the polynomial x¹⁰⁵ − 9 is irreducible in Q[x]. (*Hint*: if x¹⁰⁵ − 9 = g(x)h(x) in Z[x], then some of the complex roots of x¹⁰⁵ − 9 are roots of g(x), and others are roots of h(x).)

6. Let $f(x) = x^{p-1} + 2x^{p-2} + 3x^{p-3} + \ldots + (p-1)x + p$, where p is a prime number.

(a) Show that f(x) has no integer roots.

(b) Show that $f(x) = \frac{x^{p+1} - (p+1)x + p}{(x-1)^2}$

(c) Considering f(x + 1) modulo p, explain why f cannot be decomposed in a product of two factors of degree greater than 1 in $\mathbb{Z}[\mathbf{x}]$, and deduce that f is irreducible in $\mathbb{Q}[\mathbf{x}]$.