MA2215: Fields, rings, and modules
Homework problems due on November 26, 2012

1. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
2. Find a polynomial $f(x)$ of degree 4 with rational coefficients for which $f(\sqrt{2}+\sqrt{3})=0$. Show that $f(x)$ is irreducible in $\mathbb{Q}[x]$. (Hint: you know all the roots of this polynomial, so it must be easy to check how it can factorise.)
3. Deduce from the previous question that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=4$. Furthermore, explain, how this result implies that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$.
4. In the field $\mathbb{F}_{9}=\mathbb{F}_{3}(i)$, find an element $b$ such that $b^{8}=1$ but $b^{k} \neq 1$ for $1 \leqslant k \leqslant 7$. Deduce that the group of invertible elements $\mathbb{F}_{9}^{\times}$is a cyclic group of order 8 .
5. Suppose that $K$ is a field extension of $F$, and that $[K: F]$ is a prime number. Show that $K=F(\alpha)$ for some $\alpha \in F$. (Hint: any element of $K$ which is not in $F$ will do.)
6. Suppose that $K$ is a field extension of $F$, and that $\alpha \in K$ is algebraic of odd degree over F. Show that $F(\alpha)=F\left(\alpha^{2}\right)$. (Hint: show that in general, $F(\alpha)=F\left(\alpha^{2}\right)$ or $\left[F(\alpha): F\left(\alpha^{2}\right)\right]=2$.)
