MA2215: Fields, rings, and modules Homework problems due on November 26, 2012

1. Show that $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3}).$

2. Find a polynomial f(x) of degree 4 with rational coefficients for which $f(\sqrt{2} + \sqrt{3}) = 0$. Show that f(x) is irreducible in $\mathbb{Q}[x]$. (*Hint*: you know all the roots of this polynomial, so it must be easy to check how it can factorise.)

3. Deduce from the previous question that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}):\mathbb{Q}] = 4$. Furthermore, explain, how this result implies that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$.

4. In the field $\mathbb{F}_{9} = \mathbb{F}_{3}(i)$, find an element b such that $b^{8} = 1$ but $b^{k} \neq 1$ for $1 \leq k \leq 7$. Deduce that the group of invertible elements \mathbb{F}_{9}^{\times} is a cyclic group of order 8.

5. Suppose that K is a field extension of F, and that [K: F] is a prime number. Show that $K = F(\alpha)$ for some $\alpha \in F$. (*Hint*: any element of K which is not in F will do.)

6. Suppose that K is a field extension of F, and that $\alpha \in K$ is algebraic of odd degree over F. Show that $F(\alpha) = F(\alpha^2)$. (*Hint*: show that in general, $F(\alpha) = F(\alpha^2)$ or $[F(\alpha): F(\alpha^2)] = 2$.)