MA2215: Fields, rings, and modules Homework problems due on December 3, 2012

1. Compute the degree over \mathbb{Q} of the splitting field of $x^4 - 4x^2 - 5$.

2. Compute the degree over \mathbb{R} and over \mathbb{C} of the splitting field of $x^4 - 4x^2 - 5$.

3. Compute the degree over \mathbb{Q} of the splitting field of $x^{11}-5$. (*Hint*: show that it contains subfields of degrees 10 and 11.)

4. Compute the degree over \mathbb{F}_3 of the splitting field of $x^8 + 2$. (*Hint*: 2 = -1 in \mathbb{F}_3 .)

5. (a) Show that for the polynomial $x^p - x \in \mathbb{F}_p[x]$ we have f(x) = f(x+1).

(b) Show that if for a polynomial $f(x) \in \mathbb{F}_p[x]$ we have f(x) = f(x+1), then the degree of f is at least p.

(c) Show that $g(x) = x^p - x - 1 \in \mathbb{F}_p[x]$ is irreducible. (*Hint*: show that g(x) = g(x + 1), and deduce that if g(x) has a nontrivial factorisation into irreducibles, then for each of those irreducibles h(x) we either have h(x) = h(x + 1) or all h(x), h(x + 1), ..., h(x + p - 1) are different irreducible factors of g(x). The latter would mean that g(x) factorises into linear factors, hence has roots.)