MA2215: Fields, rings, and modules Homework problems due on December 3, 2012

1. Compute the degree over \mathbb{Q} of the splitting field of $x^{4}-4 x^{2}-5$.
2. Compute the degree over \mathbb{R} and over \mathbb{C} of the splitting field of $x^{4}-4 x^{2}-5$.
3. Compute the degree over \mathbb{Q} of the splitting field of $x^{11}-5$. (Hint: show that it contains subfields of degrees 10 and 11.)
4. Compute the degree over \mathbb{F}_{3} of the splitting field of $x^{8}+2$. (Hint: $2=-1$ in \mathbb{F}_{3}.)
5. (a) Show that for the polynomial $x^{p}-x \in \mathbb{F}_{p}[x]$ we have $f(x)=f(x+1)$.
(b) Show that if for a polynomial $f(x) \in \mathbb{F}_{p}[x]$ we have $f(x)=f(x+1)$, then the degree of f is at least p.
(c) Show that $\mathrm{g}(\mathrm{x})=\mathrm{x}^{\mathrm{p}}-\mathrm{x}-1 \in \mathbb{F}_{\mathrm{p}}[\mathrm{x}]$ is irreducible. (Hint: show that $\mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{x}+1)$, and deduce that if $g(x)$ has a nontrivial factorisation into irreducibles, then for each of those irreducibles $h(x)$ we either have $h(x)=h(x+1)$ or all $h(x), h(x+1), \ldots, h(x+p-1)$ are different irreducible factors of $g(x)$. The latter would mean that $g(x)$ factorises into linear factors, hence has roots.)
