MA2215: Fields, rings, and modules Tutorial problems, October 4, 2012

1. (a) Describe all ring homomorphisms from $\mathbb{Z} / 2 \mathbb{Z}$ to $\mathbb{Z} / 2 \mathbb{Z}$.
(b) Describe all ring homomorphisms from $\mathbb{Z} / 2 \mathbb{Z}$ to $\mathbb{Z} / 3 \mathbb{Z}$.
2. (Note: you know most of this question from your group theory class.)
(a) Show that if the integers a and b are coprime (have no common divisors), then as Abelian groups,

$$
\mathbb{Z} /(\mathrm{ab}) \mathbb{Z} \simeq \mathbb{Z} / \mathrm{a} \mathbb{Z} \times \mathbb{Z} / \mathrm{b} \mathbb{Z}
$$

(Hint: consider the map that takes class $\bar{n} \in \mathbb{Z} /(a b) \mathbb{Z}$ to the pair

$$
(\overline{\mathrm{n} \bmod \mathrm{a}}, \overline{\mathrm{n} \bmod \mathrm{~b}}) \in \mathbb{Z} / \mathrm{a} \mathbb{Z} \times \mathbb{Z} / \mathrm{b} \mathbb{Z}
$$

Show that this map is a group homomorphism, and in fact an isomorphism.)
(b) Show that the isomorphism you just constructed is a ring isomorphism, not just an Abelian group isomorphism.
3. Let R be the set of all triangular 2×2-matrices with integer entries,

$$
R=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{Z}\right\}
$$

Take $I=\left\{\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right): b \in \mathbb{Z}\right\}, S=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right): a, c \in \mathbb{Z}\right\}$. Show that both I and S are subrings of R.

Optional question (if you have some time left): describe all ring isomorphisms

$$
\alpha: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}
$$

(of course, there is the trivial one $\alpha(\overline{\mathrm{k}})=\overline{\mathrm{k}}$, but there exist other bijections that respect the ring structure). How many of those are there?

