MA2215: Fields, rings, and modules
Tutorial problems, October 18, 2012

1. Since $\mathbb{Z} / 2 \mathbb{Z}$ is clearly a field (the only nonzero element $1=\overline{1}$ is invertible), the ring of polynomials $(\mathbb{Z} / 2 \mathbb{Z})[t]$ is a Euclidean domain. Explain which of the following polynomials are irreducible: $\mathrm{t}, \mathrm{t}+1, \mathrm{t}^{2}, \mathrm{t}^{2}+\mathrm{t}, \mathrm{t}^{2}+1, \mathrm{t}^{2}+\mathrm{t}+1$.

In the two following questions, feel free to use the property $d(z w)=d(z) d(w)$ of the norm of Gaussian integers. This property implies that if z is invertible, then $d(z)$ must be invertible, and also that if $z=z_{1} z_{2}$ is not irreducible, then $d(z)=d\left(z_{1}\right) d\left(z_{2}\right)$ is a factorisation of $d(z)$, which helps to find candidates for the factors z_{1} and z_{2}.
2. Show that in $\mathbb{Z}[i]$ the only invertible elements are ± 1 and $\pm i$.
3. Which of the Gaussian integers $2=2+0 i, 3+i, 7 i$ are irreducible in $\mathbb{Z}[i]$?
4. Find some greatest common divisor of Gaussian integers $a=11+13 i$ and $b=27+31 i$.

Optional question (if you have some time left): Let $\omega=\frac{1+\sqrt{-3}}{2}$ be one of the complex roots of the equation $z^{2}-z+1=0$. In this question we shall consider the set E of all complex numbers of the form $a+b w$, where a, b are integers.

Show that $\omega^{6}=1$, and draw ω on the complex plane.
Show that E is a subring of \mathbb{C}. Given an element $z=a+b \omega$ in E, draw on the complex plane the set of all multiples of z in E. (Hint: check your notes about $\mathbb{Z}[i]$ from class, and think how the point $\omega \cdot z$ is obtained from z.)

Show that E is a Euclidean domain.

