MA2215: Fields, rings, and modules
Tutorial problems, November 15, 2012
In some of these questions, the Eisenstein criterion (formulated in class on Monday) could be useful. It states that, if R is a PID, $p \in R$ is an irreducible element, and $F=\operatorname{Frac}(R)$, then whenever for a polynomial $f(x) \in R[x]$ all the coefficients except for the leading term are divisible by p, the leading term is not divisible by p, and the constant term is not divisible by p^{2}, the polynomial $f(x)$ is irreducible in $F[x]$.

1. Show that for every n the polynomial $x^{n}-175$ is irreducible in $\mathbb{Q}[x]$.
2. (a) Show that the polynomial $f(x)=x^{2}+x+4 \in \mathbb{Z}[x]$ does not satisfy the conditions of the Eisenstein criterion for any p, but after substituting $x+2$ instead of x the Eisenstein criterion becomes applicable. Explain how to prove that $f(x)$ is irreducible.
(b) Show that not only $x^{4}+4$ does not satisfy the Eisenstein criterion for any p, but moreover, this polynomial is not irreducible.
3. Show that the polynomial $x^{2}+y^{3}-1$ is irreducible in $\mathbb{C}[x, y]$. (Hint: we have $\mathbb{C}[x, y] \simeq(\mathbb{C}[x])[y]$: every polynomial in x and y is a polynomial in y whose coefficients are polynomials in x, and vice versa.)
4. Show that the polynomial $f(x)=42 x^{4}-8 x^{3}+12 x^{2}-6 x-1$ is irreducible in $\mathbb{Q}[x]$. (Hint: look at $\mathrm{f}(1 / \mathrm{x})$.)

Optional question (if you have some time left):
5. (a) Let a_{1}, \ldots, a_{n} be distinct integers. Show that the polynomial

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)-1
$$

is irreducible over integers . (Hint: if $f=g h$ is a factorisation, look at the values of $g+h$ at a_{1}, \ldots, a_{n}.)
(b) Same question for the polynomial

$$
f(x)=\left(x-a_{1}\right)^{2}\left(x-a_{2}\right)^{2} \cdots\left(x-a_{n}\right)^{2}+1 .
$$

