MA2215: Fields, rings, and modules
Tutorial problems, November 15, 2012

1. Since $175=5^{2} \cdot 7$, the Eisenstein criterion applies with $p=7$.
2. (a) Clearly, no p works for this polynomial since the coefficient of x is equal to 1 . However, $f(x+2)=x^{2}+5 x+10$, so $p=5$ works. If $f(x)=g(x) h(x)$, then $f(x+2)=g(x+2) h(x+2)$, so irreducibility of $f(x)$ is equivalent to irreducibility of $f(x+2)$.
(b) We have $x^{4}+4+4 x^{2}-4 x^{2}=\left(x^{2}+2\right)^{2}-4 x^{2}=\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)$. Or, if you consider this solution too sneaky, note that we are looking for a factorisation

$$
x^{4}+4=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)
$$

since this polynomial has no real roots hence no factors of degree 1 , and also the product of leading coefficients is equal to 1 , so they are either both 1 or both -1 , and multiplying the factors simultaneously by -1 , we can assume that both leading coefficients are equal to 1 . Moreover, the coefficient of χ^{3} is zero, so $a+c=0$. Finally, $b d=4$, so each of b and d can take values $\pm 1, \pm 2, \pm 4$. In fact, the roots of our polynomial are complex fourth roots of -4 , and constant terms b and d are products of pairs of those roots, so we cannot get ± 1 and ± 4 as roots. Hence we should just test factorisations $\left(x^{2}+a x+2\right)\left(x^{2}-a x+2\right)$ and $\left(x^{2}+a x-2\right)\left(x^{2}-a x-2\right)$, and the first one works.
3. Consider this polynomial as a polynomial in y whose coefficients are polynomials in x, that is $y^{3}+\left(x^{2}-1\right)=y^{3}+(x-1)(x+1)$. Clearly, the Eisenstein criterion for $R=\mathbb{C}[x]$, $p=x-1$ applies.
4. Suppose that $f(x)=g(x) h(x)$, where the degrees of g and h are k and $4-k$ respectively. Then $f(1 / x)=g(1 / x) h(1 / x)$, and $x^{4} f(1 / x)=x^{k} g(1 / x) x^{4-k} h(1 / x)$. But $x^{4} f(1 / x)=42-8 x+12 x^{2}-6 x^{3}-x^{4}$, and the Eisenstein criterion with $p=2$ applies.

