MA2215: Fields, rings, and modules Tutorial problems, November 29, 2012

1. Compute the degree over \mathbb{Q} of the splitting field of $x^4 - 10x^2 + 1$. (*Hint*: you know this polynomial from the previous home assignment; its roots are $\pm \sqrt{2} \pm \sqrt{3}$.)

Compute the degrees over R and over C of the splitting field of (x³−1)(x³−2)(x²−x−1).
Compute the degree over Q of the splitting field of (x³−1)(x³−2)(x²−x−1).

4. Compute the degree over \mathbb{Q} of the splitting field of $x^5 - 2$. (*Hint*: show that it contains subfields of degrees 5 and 4.)

Optional question (if you have some time left):

5. (a) Show that $2^{l} - 1$ is divisible by 3^{k+1} if and only if l is divisible by $2 \cdot 3^{k}$. (*Hint*: prove the "if" part by induction on k, and use it to deduce the "only if" part.)

(b) Show that if α is a root of $f(x) = x^{2 \cdot 3^k} + x^{3^k} + 1$ in the algebraic closure of \mathbb{F}_2 , and g(x) is the minimum polynomial of α over \mathbb{F}_2 , then α^2 is a root of g(x) as well, and conclude from (a) that f(x) is irreducible over \mathbb{F}_2 . (*Hint*: if that's not the case, and h(x) is the minimum polynomial of α^2 , then $h(x^2)$ has α among its roots, but $h(x^2) = h(x)^2$ over \mathbb{F}_2 .)