> MA2215: Fields, rings, and modules

Tutorial problems, November 29, 2012

1. Compute the degree over \mathbb{Q} of the splitting field of $x^{4}-10 x^{2}+1$. (Hint: you know this polynomial from the previous home assignment; its roots are $\pm \sqrt{2} \pm \sqrt{3}$.)
2. Compute the degrees over \mathbb{R} and over \mathbb{C} of the splitting field of $\left(x^{3}-1\right)\left(x^{3}-2\right)\left(x^{2}-x-1\right)$.
3. Compute the degree over \mathbb{Q} of the splitting field of $\left(x^{3}-1\right)\left(x^{3}-2\right)\left(x^{2}-x-1\right)$.
4. Compute the degree over \mathbb{Q} of the splitting field of $x^{5}-2$. (Hint: show that it contains subfields of degrees 5 and 4.)

Optional question (if you have some time left):
5. (a) Show that $2^{l}-1$ is divisible by 3^{k+1} if and only if l is divisible by $2 \cdot 3^{k}$. (Hint: prove the "if" part by induction on k, and use it to deduce the "only if" part.)
(b) Show that if α is a root of $f(x)=x^{2 \cdot 3^{k}}+x^{3^{k}}+1$ in the algebraic closure of \mathbb{F}_{2}, and $g(x)$ is the minimum polynomial of α over \mathbb{F}_{2}, then α^{2} is a root of $g(x)$ as well, and conclude from (a) that $f(x)$ is irreducible over \mathbb{F}_{2}. (Hint: if that's not the case, and $h(x)$ is the minimum polynomial of α^{2}, then $h\left(x^{2}\right)$ has α among its roots, but $h\left(x^{2}\right)=h(x)^{2}$ over \mathbb{F}_{2}.)

