1. This has all been done in homework: since we know all roots, we can easily see that we cannot group some of them together to get a factor with rational coefficients, so $f(x)$ is irreducible, and clearly adjoining one root makes this polynomial split into linear factors, so the degree is 4 .
2. Note that the roots of $x^{3}-1$ are $1, \omega, \omega^{2}$, where ω is a root of $x^{2}+x+1$, the roots of $x^{3}-2$ are $\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^{2} \sqrt[3]{2}$, and the roots of $x^{2}-x-1$ are τ and $1-\tau$, where τ is one of the roots of that polynomial. Here τ is a real number, and ω is a complex number which is not real. So the splitting field over \mathbb{R} is $\mathbb{R}(\boldsymbol{\omega})=\mathbb{C}$ of degree 2 , and the splitting field over \mathbb{C} is \mathbb{C}, since all roots are already there.
3. It is clear from the previous question that the splitting field of this polynomial is $\mathbb{Q}(\sqrt[3]{2}, \omega, \tau)$. Now, $\mathbb{Q}(\omega, \tau) \neq \mathbb{Q}(\tau)$ since $\mathbb{Q}(\tau)$ is a subfield of \mathbb{R}, so $\mathbb{Q}(\omega, \tau)$ is of degree 4 over \mathbb{Q}. Also, $x^{3}-2$ is irreducible, so the degree of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} is 3 . By Tower law, the degree of $\mathbb{Q}(\sqrt[3]{2}, \omega, \tau)$ over \mathbb{Q} is divisible by 3 and by 4 , hence by 12 . But since it is obtained from \mathbb{Q} by adjoining roots of equations of degree 3,2 , and 2 , by Tower Law its degree is at most 12 , hence it is 12 .
4. Note that the roots of this polynomial are $\sqrt[5]{2}, \lambda \sqrt[5]{2}, \lambda^{2} \sqrt[5]{2}, \lambda^{3} \sqrt[5]{2}, \lambda \sqrt[5]{2}$, where λ is a primitive root of 1 of degree 5 . Note that λ is a root of $\frac{x^{5}-1}{x-1}=x^{4}+x^{3}+x^{2}+x+1$, which is irreducible over \mathbb{Q}, as we proved in class (since 5 us a prime). Since the splitting field of our polynomial is manifestly $\mathbb{Q}(\sqrt[5]{2}, \lambda)$, and it contains subfields $\mathbb{Q}(\lambda)$ of degree 4 (as we just proved) and $\mathbb{Q}(\sqrt[5]{2})$ of degree 5 (since $\chi^{5}-2$ is irreducible by Eisenstein), its degree is divisible by 20 , and is at most 20 , hence actually is 20 .
