
MA2316: solutions to the quiz
1. Note that 84 = 3 · 4 · 7, and 36 = 4 · 9. Therefore the systems of congruences in

question can be replaced by equivalent systems

(a)



x ≡ 2 (mod 3),

x ≡ 3 (mod 4),

x ≡ 4 (mod 7),

x ≡ 0 (mod 4),

x ≡ 8 (mod 9).

(b)



x ≡ 2 (mod 3),

x ≡ 3 (mod 4),

x ≡ 4 (mod 7),

x ≡ 3 (mod 4),

x ≡ 7 (mod 9).

(c)



x ≡ 2 (mod 3),

x ≡ 3 (mod 4),

x ≡ 4 (mod 7),

x ≡ 3 (mod 4),

x ≡ 5 (mod 9).

From this we instantly see that the first system does not have solutions since it has
contradicting congruences x ≡ 3 (mod 4) and x ≡ 0 (mod 4), the second system does
not have solutions because it has contradicting congruences x ≡ 2 (mod 3) and x ≡ 7

(mod 9) (since x ≡ 7 (mod 9) implies x ≡ 1 (mod 3)), and the third system is equivalent
to the system 

x ≡ 3 (mod 4),

x ≡ 4 (mod 7),

x ≡ 5 (mod 9).

(since x ≡ 5 (mod 9) implies x ≡ 2 (mod 3), the latter congruence can be thrown
away without changing the solution set). It remains to describe solutions to this,
where we are in the usual setup of the Chinese Remainder Theorem. First of all,
since we have 4 · 2 + 7 · (−1) = 1, the first two congruences can be assembled into
x ≡ 3 · 7 · (−1) + 4 · 4 · 2 = 32 − 21 = 11 (mod 28). Second, since 28 · 1 + 9 · (−3) = 1,
the remaining congruence can be merged in, obtaining

x ≡ 11 · 9 · (−3) + 5 · 28 · 1 = 140− 297 = −157 ≡ 95 (mod 252).

2. A general remark: solving polynomial congruences modulo prime numbers is hard,
unless we deal with quadratic equations, in which case we can use Legendre symbols, as
we shall see below. Once that is done, solving them modulo prime powers, if needed, is
done using Hensel’s lemma, and solving them modulo products of prime powers is done
using the Chinese Remainder Theorem.

(a) x2 − 10x + 11 ≡ 0 (mod 61): completing the square, we get (x − 5)2 − 14 ≡ 0

(mod 61), so we just need to know if 14 is a square modulo 61. Since 61 is a prime, we
need to compute
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therefore the congruence has solutions.
(b) x2 − 10x + 11 ≡ 0 (mod 183): since 183 = 61 · 3, this congruence has solutions

if the two congruences modulo 61 and modulo 3 do. We already looked at 61 above, so
we just need to know if 14 is a square modulo 3. Since 14 ≡ 2 (mod 3), there are no
solutions.



(c) x2 + 2x − 9 ≡ 0 (mod 97): completing the square, we get (x + 1)2 − 10 ≡ 0

(mod 97), so we need to know if 10 is a square modulo 97. Since 97 is a prime, we need
to compute
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therefore the congruence has no solutions.
3. Note that f ′(x) = 3x2 + 3, so in Z/5Z we have f ′(3) = 0 and f ′(4) 6= 0. Therefore,

the root x = 4 admits the unique lift to Z/25Z by Hensel’s lemma. To investigate the
root x = 3, let us try to lift it in some way, letting x = 3+ 5k. We have

(3+5k)3+3(3+5k)+9 ≡ 33+3·32 ·5k+9+15k+9 ≡ 2+10k+18+15k ≡ 20 (mod 25),

so there is no way to choose k to yield a root. We conclude that this equation has just
one root modulo 25.


