Number Theory Reporting, Tutorial 3

Sean Diffley, Eric Hattaway, Conn McCarthy, Nathan O Duill, Michael Ferreira.

February 6, 2014

Question 1

Given $\tau: \mathbb{Z} /(a b) \mathbb{Z} \rightarrow \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ defined as $\tau(n+a b \mathbb{Z})=(n+a \mathbb{Z}, n+b \mathbb{Z})$ we need to prove that it is a ring homomorphism, that is, prove that the function τ preserves the operation of addition and multiplication.

$$
\begin{aligned}
\tau(x+y) & =\tau(x)+\tau(y) \\
\tau(x y) & =\tau(x) \tau(y)
\end{aligned}
$$

If we write $x=\left(n_{1}+(a b) \mathbb{Z}\right)$ and $y=\left(n_{2}+(a b) \mathbb{Z}\right)$ then:

$$
\begin{gathered}
\tau\left(\left(n_{1}+(a b) \mathbb{Z}\right)+\left(n_{2}+(a b) \mathbb{Z}\right)\right) \rightarrow \tau\left(\left(n_{1}+n_{2}\right)+(a b) \mathbb{Z}\right) \rightarrow\left(\left(n_{1}+n_{2}\right)+a \mathbb{Z},\left(n_{1}+n_{2}\right)+b \mathbb{Z}\right) \rightarrow \\
\left(n_{1}+a \mathbb{Z}, n_{1}+b \mathbb{Z}\right)+\left(n_{2}+a \mathbb{Z}, n_{2}+b \mathbb{Z}\right)
\end{gathered}
$$

where in the last step we are using the definition of addition of direct product of rings:

$$
\left(r+r^{\prime}, s+s^{\prime}\right)=(r, s)+\left(r^{\prime}, s^{\prime}\right)
$$

For multiplication we have:

$$
\begin{gathered}
\tau\left(\left(n_{1}+(a b) \mathbb{Z}\right)\left(n_{2}+(a b) \mathbb{Z}\right)\right) \rightarrow \tau\left(n_{1} n_{2}+(a b) \mathbb{Z}\right) \rightarrow\left(n_{1} n_{2}+a \mathbb{Z}, n_{1} n_{2}+b \mathbb{Z}\right) \rightarrow \\
\left(n_{1}+a \mathbb{Z}, n_{1}+b \mathbb{Z}\right)\left(n_{2}+a \mathbb{Z}, n_{2}+b \mathbb{Z}\right)
\end{gathered}
$$

where in the last step again we are using the definition of multiplication for direct product of rings:

$$
\left(r r^{\prime}, s s^{\prime}\right) \rightarrow(r, s)\left(r^{\prime}, s^{\prime}\right)
$$

It is clear that the identity maps to the identity because we can just substitute the identity for n in the above. So we have shown that τ preserves the operations of the ring and is hence a homomorphism.
Let us note that the kernel of this map is trivial, that is consists of zero only. For if

$$
(n+a \mathbb{Z}, n+b \mathbb{Z})=\tau(n+a b \mathbb{Z})=(0,0)=(a \mathbb{Z}, b \mathbb{Z})
$$

then n is divisible by a and by b, hence is divisible by $a b$ since a and b are coprime, so $n+a b \mathbb{Z}=a b \mathbb{Z}$ which is 0 in $\mathbb{Z} /(a b) \mathbb{Z}$.
Finally, we use the First Isomorphism Theorem for rings which states that the image of a ring homomorphism $\phi: R \rightarrow S$ is isomorphic to the quotient ring $R / \operatorname{ker}(\phi)$. For finite rings, it implies that an injective homomorphism of two rings with the same number of elements is an isomophism. Since the rings $\mathbb{Z} /(a b) \mathbb{Z}$ and $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ both consist of $a b$ elements, and τ is injective (since it has trivial kernel), we conclude that τ is an isomophism.

Question 2

$$
\operatorname{gcd}(a, b)=1
$$

So

$$
\begin{aligned}
& \Rightarrow a x+b y=1 \text { for certain } x, y \\
& \Rightarrow a x=-b y+1=r \\
& \Rightarrow r=0 \quad \bmod a ; r=1 \quad \bmod b
\end{aligned}
$$

Similarly,
$\Rightarrow a x+b y=1$ for certain x, y
$\Rightarrow b y=-a x+1=r$
$\Rightarrow r=1 \bmod a ; r=0 \quad \bmod b$

For general m, n

$$
\begin{aligned}
& a x+b y=1 \\
& \Rightarrow(n-m)(a x+b y)=1(n-m) \\
& \Rightarrow a(n-m) x+b(n-m) y=n-m \\
& \Rightarrow(n-m) x=x^{\prime} ;(n-m) y=y^{\prime} \\
& \Rightarrow a x^{\prime}+b y^{\prime}=n-m \\
& \Rightarrow a x^{\prime}+m=-b y^{\prime}+n=r \\
& \Rightarrow r=m \quad \bmod a ; r=n \quad \bmod b
\end{aligned}
$$

Uniqueness trivially follows from the previous question.

Question 3

We need to solve the following system of equations:
$x \equiv 11(\bmod 23)$
$x \equiv 12(\bmod 25)$
$x \equiv 13(\bmod 27)$
Let $m_{1}=23 m_{2}=25 m_{3}=27$
and note that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1, i \neq j$
which means that m_{1}, m_{2}, m_{3} are pairwise coprime, and thus, by the Chinese Remainder Theorem, there exists a unique to the solution to the system of equations mod M , where $M=m_{1} \cdot m_{2} \cdot m_{3}$
Using modular arithmetic we can substitute x into each congruence to find the general solution.
$\mathrm{Eq}(1)$ can be rewritten as follows: $x=11+23 n_{1}$ where n_{1} is an integer.

We substitute this into eq (2):
$11+23 n_{1} \equiv 12(\bmod 25)$ and solve for n_{1} :
$23 n_{1} \equiv 1(\bmod 25)$
$-2 n_{1} \equiv 1(\bmod 25)$
13. $-2 n_{1} \equiv 13.1$ (mod25)
$-n_{1} \equiv 13(\bmod 25)$
$n_{1} \equiv-13(\bmod 25) \equiv 12(\bmod 25)$
or equivalently
$n_{1}=12+25 n_{2}$
where n_{2} is an integer. Now eq (1) can be rewritten as:
$x=11+23\left(12+25 n_{2}\right)=287+575 n_{2}$
We now substitute this representation of x into eq (3): $287+575 n_{2} \equiv 13(\bmod 27)$
$575 n_{2} \equiv-274(\bmod 27)$
$8 n_{2} \equiv 23(\bmod 27)$
$17.8 n_{2} \equiv 17.23(\bmod 27)$
$136 n_{2} \equiv 391(\bmod 27)$
$n_{2} \equiv 13(\bmod 27)$
or equivalently,
$n_{2}=13+27 n_{3}$
where n_{3} is an integer. We substitute this into eq (1) again, which gives:
$x=11+23\left(12+25\left[13+27 n_{3}\right]\right)$
$x=11+23.12+23.25 .13+23.25 .27 n_{3}$
$x=7762+23.25 .27 n_{3}$
or equivalently, $x=7762(\bmod M)$
where $M=m_{1} \cdot m_{2} \cdot m_{3}$, as required.

Question 4

$$
\begin{array}{ll}
x \equiv a & \bmod 100 \\
x \equiv b & \bmod 35
\end{array}
$$

So

$$
\begin{aligned}
& \Rightarrow x=100 m+a=35 n+b \\
& \Rightarrow 100 m-35 n=b-a \\
& \Rightarrow 5(20 m-7 n)=b-a
\end{aligned}
$$

And

$$
\begin{aligned}
& \operatorname{gcd}(100,35)=5 \\
& \Rightarrow 100 r+35 q=5 \text { for some } \mathrm{r}, \mathrm{~s} \\
& \Rightarrow 20 r+7 q=1 \\
& \Rightarrow s(20 r+7 q)=s(1) \\
& \Rightarrow 20 s r+7 s q=s
\end{aligned}
$$

Let

$$
s r=r^{\prime} ; s q=q^{\prime}
$$

Then

$$
\begin{aligned}
& 20 r^{\prime}+7 q^{\prime}=s, \text { for any } \mathrm{s} \\
& \Rightarrow 5 s=b-a \\
& \Rightarrow b=a \quad \bmod 5
\end{aligned}
$$

Which is equivalent to

$$
a=b \quad \bmod 5
$$

So, for all

$$
a=b \quad \bmod 5,
$$

The system of congruences

$$
\begin{array}{ll}
x=a & \bmod 100 \\
x=b & \bmod 35
\end{array}
$$

will have integer solutions.

Question 5

Suppose there are only finitely many such primes. Then \exists some prime p s.t
$2 p+1,2(2 p+1)+1=4 p+3, \ldots$ and in general $2^{n} p+2^{n}-1$ is prime for all positive integers n. To see that this formula holds in general, note that
$2\left(2^{n} p+2^{n}-1\right)+1=2^{n+1} p+2^{n+1}-1$
In particular, letting $n=p-1$, we get that $2^{p-1} p+\left(2^{p-1}-1\right)$ is prime. But by Fermat's Little Theorem,
$2^{p-1} \equiv 1(\bmod \mathrm{p})$
$2^{p-1}-1 \equiv 0(\bmod \mathrm{p})$
That is, $2^{p-1}-1$ is an integer multiple of p . Thus $2^{p-1} p+\left(2^{p-1}-1\right)$ is an integer multiple of p , contradicting the assumption that it is prime. Thus there are infinitely many such primes, as required.

Question 6

Let p be a prime divisor of $4 n^{2}+1$
$4 n^{2}+1 \equiv 0 \bmod \mathrm{p}$
$(2 n)^{2}+1 \equiv 0 \bmod \mathrm{p}$
$\Longrightarrow p \equiv 1 \bmod 4$ (given)
$\Longrightarrow p=4 k+1$, some integer k

As required. To prove there are infinitely many primes of this form, suppose there are only finitely man such primes, say p_{1}, \cdots, p_{n}

Consider $\left(2 p_{1} p_{2} p_{n}\right)^{2}+1=4\left(p_{1}\right)^{2} \ldots\left(p_{n}\right)^{2}+1$
This is not divisible by 2 , or any of p_{1}, \ldots, p_{n}. Either it is prime, and thus is another prime of the form $4 \mathrm{k}+1$, or it is divisible by a prime, which by above must be of the form $4 \mathrm{k}+1$. In each case, we get an additional prime of the form $4 \mathrm{k}+1$. Inductively there are infinite such primes.

