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Question 1

Given 7 : Z/(ab)Z — Z]aZ x Z/bZ defined as 7(n + abZ) = (n + aZ,n + bZ) we need to prove
that it is a ring homomorphism, that is, prove that the function 7 preserves the operation of
addition and multiplication.

T(z +y) = 7(z) + 7(y)
T(zy) = 7(z)7(y
If we write x = (ny + (ab)Z) and y = (n2 + (ab)Z) then:

7((n1 + (ab)Z) + (n2 + (ab)Z)) — 7((n1 + n2) + (ab)Z) — ((n1 + n2) + aZ, (1 + n2) + bZ) —
(n1 4+ aZ,ny + bZ) + (n2 + aZ,ny + bZ)

where in the last step we are using the definition of addition of direct product of rings:
(r+r,s+5)=(r,s)+ (1)
For multiplication we have:

7((n1 + (ab)Z)(ng + (ab)Z)) — T(ning + (ab)Z) — (ning + aZ,niny + bZ) —
(n1 4 aZ,ny + bZ)(n2 + aZ,ny + bZ)

where in the last step again we are using the definition of multiplication for direct product of
rings:

(rr', 58"y = (r,8)(1', §').

It is clear that the identity maps to the identity because we can just substitute the identity for
n in the above. So we have shown that 7 preserves the operations of the ring and is hence a
homomorphism.

Let us note that the kernel of this map is trivial, that is consists of zero only. For if

(n+aZ,n+bZ) = 7(n+ abZ) = (0,0) = (aZ,bZ),

then n is divisible by a and by b, hence is divisible by ab since a and b are coprime, so

n + abZ = abZ which is 0 in Z/(ab)Z.

Finally, we use the First Isomorphism Theorem for rings which states that the image of a ring
homomorphism ¢: R — S is isomorphic to the quotient ring R/ ker(¢). For finite rings, it
implies that an injective homomorphism of two rings with the same number of elements is an
isomophism. Since the rings Z/(ab)Z and Z/aZ x Z/bZ both consist of ab elements, and 7 is
injective (since it has trivial kernel), we conclude that 7 is an isomophism.



Question 2

ged(a,b) =1

So
= ax + by = 1 for certain z,y
=ar=—-by+1=r
=r=0 moda;r=1 modbd
Similarly,

= ax + by = 1 for certain z,y
=by=—ar+1=r
=r=1 moda;r=0 modbd

For general m, n

ar+by=1

= (n —m)(ax + by) = 1(n —m)
=a(n—m)x+bn—m)y=n—m
= n-mz=2a"; (n-—my=y
=ax' +by =n—m
=ar’'+m=-by +n=r

=r=m moda;r=n modbd

Uniqueness trivially follows from the previous question.
Question 3

We need to solve the following system of equations:

x = 11(mod23)

x = 12(mod25)

x = 13(mod27)

Let mq = 23 mo = 25 mg = 27

and note that ged(m;, m;) = 1,7 # j

which means that mq, mg, m3 are pairwise coprime, and thus, by the Chinese Remainder
Theorem, there exists a unique to the solution to the system of equations mod M, where
M = mi.mo.1ms3s

Using modular arithmetic we can substitute x into each congruence to find the general
solution.

Eq (1) can be rewritten as follows: = 11 + 23n; where n; is an integer.



We substitute this into eq (2):

11 4 23n; = 12(mod25) and solve for ny:

23n1 = 1(mod25)

—2n1 = 1(mod25)

13. — 2ny = 13.1(mod25)

—ny = 13(mod25)

ny = —13(mod25) = 12(mod25)

or equivalently

ni = 12 4+ 25n9

where ng is an integer. Now eq (1) can be rewritten as:
z =11+ 23(12 + 25ny) = 287 + 575n;

We now substitute this representation of z into eq (3): 287 + 575ny = 13(mod27)
575ny = —274(mod27)

8ny = 23(mMod27)

17.8ny = 17.23(mod27)

1361y = 391(mod27)

ny = 13(mod27)

or equivalently,

no = 13 + 2Tng

where n3 is an integer. We substitute this into eq (1) again, which gives:
x =11+ 23(12 + 25[13 + 27n3])

r =114 23.12 4+ 23.25.13 + 23.25.2Tn3

T ="7762 + 23.25.27ng

or equivalently, x = 7762(modM )

where M = mj.ms.mg, as required.

Question 4

z=a mod 100
z=b mod 35

So
=x=100m+a=35n+1b
= 100m —35n=5b—a
=520m—Tn)=b—a

And
gcd(100,35) =5
= 100r + 35¢ = 5 for some r, s
=20r+7¢=1
= 5(20r + 7q) = s(1)
= 20sr 4+ 7sq=s
Let

/ /
sr=1;5¢ =q



Then
20r" +7¢' = s, for any s

=5Hs=b—a
=b=a modbH

Which is equivalent to

a=b mod5H

So, for all

a=>b mod 5,

The system of congruences

Tz =a mod 100
z=>b mod 35

will have integer solutions.
Question 5

Suppose there are only finitely many such primes. Then 3 some prime p s.t
2p+1,2(2p+1)+1 =4p+3,... and in general 2"p + 2™ — 1 is prime for all positive integers n.
To see that this formula holds in general, note that

2(2%p 42" — 1) + 1 = 2nflp  ontl g

In particular, letting n = p — 1, we get that 2°~!p + (2°~! — 1) is prime. But by Fermat’s
Little Theorem,

2P~1 =1 (mod p)

2P=1 — 1 =0 (mod p)

That is, 2°~! — 1 is an integer multiple of p. Thus 2P~ 'p + (2P~ — 1) is an integer multiple of
p, contradicting the assumption that it is prime. Thus there are infinitely many such primes,
as required.

Question 6

Let p be a prime divisor of 4n? + 1
4n? +1=0mod p

(2n)? +1 =0 mod p

= p =1 mod 4 (given)

—> p =4k + 1, some integer k

As required. To prove there are infinitely many primes of this form, suppose there are only
finitely man such primes, say p1,--- ,pn



Consider (2p1papn)? +1 = 4(p1)?...(pn)%2 + 1

This is not divisible by 2, or any of p1, ..., p,. Either it is prime, and thus is another prime of

the form 4k+1, or it is divisible by a prime, which by above must be of the form 4k+1. In each
case, we get an additional prime of the form 4k+1. Inductively there are infinite such primes.



