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Question 1

Given τ : Z/(ab)Z→ Z/aZ× Z/bZ defined as τ(n+ abZ) = (n+ aZ, n+ bZ) we need to prove
that it is a ring homomorphism, that is, prove that the function τ preserves the operation of
addition and multiplication.

τ(x+ y) = τ(x) + τ(y)
τ(xy) = τ(x)τ(y)

If we write x = (n1 + (ab)Z) and y = (n2 + (ab)Z) then:

τ((n1 + (ab)Z) + (n2 + (ab)Z))→ τ((n1 + n2) + (ab)Z)→ ((n1 + n2) + aZ, (n1 + n2) + bZ)→
(n1 + aZ, n1 + bZ) + (n2 + aZ, n2 + bZ)

where in the last step we are using the definition of addition of direct product of rings:

(r + r′, s+ s′) = (r, s) + (r′, s′).

For multiplication we have:

τ((n1 + (ab)Z)(n2 + (ab)Z))→ τ(n1n2 + (ab)Z)→ (n1n2 + aZ, n1n2 + bZ)→
(n1 + aZ, n1 + bZ)(n2 + aZ, n2 + bZ)

where in the last step again we are using the definition of multiplication for direct product of
rings:

(rr′, ss′)→ (r, s)(r′, s′).

It is clear that the identity maps to the identity because we can just substitute the identity for
n in the above. So we have shown that τ preserves the operations of the ring and is hence a
homomorphism.
Let us note that the kernel of this map is trivial, that is consists of zero only. For if

(n+ aZ, n+ bZ) = τ(n+ abZ) = (0, 0) = (aZ, bZ),

then n is divisible by a and by b, hence is divisible by ab since a and b are coprime, so
n+ abZ = abZ which is 0 in Z/(ab)Z.
Finally, we use the First Isomorphism Theorem for rings which states that the image of a ring
homomorphism φ : R→ S is isomorphic to the quotient ring R/ ker(φ). For finite rings, it
implies that an injective homomorphism of two rings with the same number of elements is an
isomophism. Since the rings Z/(ab)Z and Z/aZ× Z/bZ both consist of ab elements, and τ is
injective (since it has trivial kernel), we conclude that τ is an isomophism.
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Question 2

gcd(a, b) = 1

So

⇒ ax+ by = 1 for certain x, y

⇒ ax = −by + 1 = r

⇒ r = 0 mod a; r = 1 mod b

Similarly,

⇒ ax+ by = 1 for certain x, y

⇒ by = −ax+ 1 = r

⇒ r = 1 mod a ; r = 0 mod b

For general m, n

ax+ by = 1

⇒ (n−m)(ax+ by) = 1(n−m)

⇒ a(n−m)x+ b(n−m)y = n−m
⇒ (n−m)x = x′ ; (n−m)y = y′

⇒ ax′ + by′ = n−m
⇒ ax′ +m = −by′ + n = r

⇒ r = m mod a ; r = n mod b

Uniqueness trivially follows from the previous question.

Question 3

We need to solve the following system of equations:
x ≡ 11(mod23)
x ≡ 12(mod25)
x ≡ 13(mod27)
Let m1 = 23 m2 = 25 m3 = 27
and note that gcd(mi,mj) = 1, i 6= j
which means that m1,m2,m3 are pairwise coprime, and thus, by the Chinese Remainder
Theorem, there exists a unique to the solution to the system of equations mod M, where
M = m1.m2.m3

Using modular arithmetic we can substitute x into each congruence to find the general
solution.
Eq (1) can be rewritten as follows: x = 11 + 23n1 where n1 is an integer.
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We substitute this into eq (2):
11 + 23n1 ≡ 12(mod25) and solve for n1:
23n1 ≡ 1(mod25)
−2n1 ≡ 1(mod25)
13.− 2n1 ≡ 13.1(mod25)
−n1 ≡ 13(mod25)
n1 ≡ −13(mod25) ≡ 12(mod25)
or equivalently
n1 = 12 + 25n2
where n2 is an integer. Now eq (1) can be rewritten as:
x = 11 + 23(12 + 25n2) = 287 + 575n2
We now substitute this representation of x into eq (3): 287 + 575n2 ≡ 13(mod27)
575n2 ≡ −274(mod27)
8n2 ≡ 23(mod27)
17.8n2 ≡ 17.23(mod27)
136n2 ≡ 391(mod27)
n2 ≡ 13(mod27)
or equivalently,
n2 = 13 + 27n3
where n3 is an integer. We substitute this into eq (1) again, which gives:
x = 11 + 23(12 + 25[13 + 27n3])
x = 11 + 23.12 + 23.25.13 + 23.25.27n3
x = 7762 + 23.25.27n3
or equivalently, x = 7762(modM)
where M = m1.m2.m3, as required.
Question 4

x ≡ a mod 100

x ≡ b mod 35

So

⇒ x = 100m+ a = 35n+ b

⇒ 100m− 35n = b− a
⇒ 5(20m− 7n) = b− a

And

gcd(100, 35) = 5

⇒ 100r + 35q = 5 for some r, s

⇒ 20r + 7q = 1

⇒ s(20r + 7q) = s(1)

⇒ 20sr + 7sq = s

Let

sr = r′; sq = q′
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Then

20r′ + 7q′ = s, for any s

⇒ 5s = b− a
⇒ b = a mod 5

Which is equivalent to

a = b mod 5

So, for all

a = b mod 5,

The system of congruences

x = a mod 100

x = b mod 35

will have integer solutions.

Question 5

Suppose there are only finitely many such primes. Then ∃ some prime p s.t
2p+ 1, 2(2p+ 1) + 1 = 4p+ 3, ... and in general 2np+ 2n − 1 is prime for all positive integers n.
To see that this formula holds in general, note that

2(2np+ 2n − 1) + 1 = 2n+1p+ 2n+1 − 1

In particular, letting n = p− 1, we get that 2p−1p+ (2p−1 − 1) is prime. But by Fermat’s
Little Theorem,
2p−1 ≡ 1 (mod p)
2p−1 − 1 ≡ 0 (mod p)
That is, 2p−1 − 1 is an integer multiple of p. Thus 2p−1p+ (2p−1 − 1) is an integer multiple of
p, contradicting the assumption that it is prime. Thus there are infinitely many such primes,
as required.

Question 6

Let p be a prime divisor of 4n2 + 1
4n2 + 1 ≡ 0 mod p
(2n)2 + 1 ≡ 0 mod p
=⇒ p ≡ 1 mod 4 (given)
=⇒ p = 4k + 1, some integer k

As required. To prove there are infinitely many primes of this form, suppose there are only
finitely man such primes, say p1, · · · , pn
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Consider (2p1p2pn)2 + 1 = 4(p1)
2...(pn)2 + 1

This is not divisible by 2, or any of p1, ..., pn. Either it is prime, and thus is another prime of
the form 4k+1, or it is divisible by a prime, which by above must be of the form 4k+1. In each
case, we get an additional prime of the form 4k+1. Inductively there are infinite such primes.
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