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Let n be an odd number, and let n = p1p2 . . . pk be its prime decomposition

(possibly with repeated factors). Let us define the Jacobi symbol ( an) by the

formula

(
a

n

) = (
a

p1
)(

a

p2
) . . . (

a

pk
).

1). Give an example of a and n for which ( an) = 1, but a is not congruent to

a square modulo n.

Consider a = 5, n = 9

Then (
5

9
) = (

5

3
)(
5

3
)

= (
2

3
)(
2

3
) = (

4

3
) = (

1

3
) = 1

But, 02 ⌘ 0, 12 ⌘ 1, 22 ⌘ 4, 32 ⌘ 0, 42 ⌘ 7, 52 ⌘ 7, 62 ⌘ 0, 72 ⌘ 4, 82 ⌘ 1

So x

2 6⌘ 5 (mod 9)

2). Show that for Jacobi symbols we have ( an)(
b
n) = (abn ) and ( a

n1
)( a

n2
) = ( a

n1n2
)

whenever n, n1, n2 are odd.

Let n = p1p2 . . . pk be odd then
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(
a

n

)(
b

n

) = (
a

p1
)(

a

p2
) . . . (

a

pk
)(

b

p1
) . . . (

b

pk
)

= (
a

p1
)(

b

p1
) . . . (

a

pk
)(

b

pk
)

= (
ab

p1
) . . . (

ab

pk
) = (

ab

n

)

Let n1 = p1 . . . pk, n2 = q1 . . . qk,
then n1n2 = p1 . . . pkq1 . . . qk = p1q1 . . . pkqk

Then (
a

n1
)(

a

n2
) = (

a

p1
) . . . (

a

pk
)(

a

q1
) . . . (

a

qk
)

= (
a

p1
)(

a

q1
) . . . (

a

pk
)(

a

qk
)

= (
a

n1n2
)

3). Show that if m and n are odd integers, then

mn�1
2 ⌘ m�1

2 + n�1
2 (mod 2).

Explain why it implies that for each odd n we have (�1
n ) = (�1)

n�1
2

Part 1

(
mn� 1

2
) ⌘ (

m� 1

2
+

n� 1

2
) (mod 2) () (

mn� 1

2
� (m+ n)� 2

2
) ⌘ 0 (mod 2)

(
mn� 1

2
� (m+ n)� 2

2
) =

mn� 1� (m+ n) + 2

2
=

mn� (m+ n) + 1

2
=

(m� 1)(n� 1)

2

If (m� 1), (n� 1) are even ) (m�1)(n�1)
2 is even.

So (m�1)(n�1)
2 ⌘ 0 (mod 2) ) (mn�1

2 ) ⌘ (m�1
2 + n�1

2 ) (mod 2)

Part 2

For part 2 we use the fact that for a prime p: (�1
p ) = �1(

p�1
2 ).

We want (�1
n ) = �1(

n�1
2 ) for n odd.
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(
�1

n

) = (
�1

p1
)(
�1

p2
) . . . (

�1

pk
) where p1 . . . pk is the prime decomposition of n and pi is odd

= �1(
p1�1

2 )
.� 1(

p2�1
2 )

. . .� 1(
pk�1

2 )

= �1
Pk

i=1
pi�1

2

Now we observe that
Pk

i=1
pi�1
2 ⌘ (p1p2...pk�1

2 ) (mod 2) follows from part 1 by induction,

so

�1
Pk

i=1(
pi�1

2 ) = �1
p1p2...pk�1

2 = �1
n�1
2

4). Show that for any two coprime odd integers m,n we have (mn )(
n
m) =

(�1)
m�1

2 .n�1
2
.

Let m = p1 . . . pk and n = q1 . . . ql

m,n coprime ) qi 6= pj for any i, j.

(
m

n

) = (
p1 . . . pk

q1 . . . ql
)

= (
p1

q1 . . . ql
)(

p2

q1 . . . ql
) . . . (

pk

q1 . . . ql
) =

kY

i=1

(
pi

q1 . . . ql
)

kY

i=1

(
pi

q1 . . . ql
) =

kY

i=1

(
pi

q1
)

kY

i=1

(
pi

q2
) . . .

kY

i=1

(
pi

ql
)

Similarly, for ( n
m) we get ( n

m) = ( q1...ql
p1...pk

) =
Ql

j=1(
qj

p1...pk
) =

Ql
j=1(

qj
p1
)
Ql

j=1(
qj
p2
) . . .

Ql
j=1(

qj
pk
).

) (
m

n

)(
n

m

) =
kY

i=1

(
pi

q1
) . . .

kY

i=1

(
pi

ql
).

lY

j=1

(
qj

p1
) . . .

lY

j=1

(
qj

pk
)

= (
lY

j=1

kY

i=1

(
pi

qj
).

kY

i=1

lY

j=1

(
qj

pi
)) by quadratic reciprocity law (

pi

qj
)(
qj

pi
) = �1(

pi�1
2 )(

qj�1

2 )

= �1
Pl

j=1

Pk
i=1(

pi�1
2 )(

qj�1

2 )

= �1
Pk

i=1(
pi�1

2 )
Pl

j=1(
qj�1

2 )
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And by Question 3
Pk

i=1(
pi�1
2 ) ⌘ m�1

2 .

Similarly for
Pl

j=1(
qj�1
2 ) ⌘ n�1

2 .

) �1(
m�1

2 )(n�1
2 ) = (

m

n

)(
n

m

)

5). Applying previous problem with m = n+ 2, show that for each odd n we

have ( 2n) = (�1)
n2�1

8
.

(n+2
n )( n

n+2) ) for odd n, ( 2n) = �1
n2�1

8

Our argument will rely on induction on n. Take n = 3, (23) = �11 = �1
9�1
8 , true for

n = 3.

(n+2
n )( n

n+2) = �1(
n+2�1

2 ).(n�1
2 ) = �1

n2�1
4

Observe that (n+2
n ) = ( 2n) and ( n

n+2) = ( �2
n+2) = ( 2

n+2)(
�1
n+2)

We have ( 2n)(
2

n+2)(
�1
n+2) = �1

n2�1
4

Assume ( 2n) = �1
n2�1

8 and �1
n+2 = �1(

(n+2)�1
2 ) by Question 3.

) 2
n+2 (�1

n2�1
8 )(�1(

n+1
2 )) = �1

n2�1
4

2
n+2 = �1

n2�1
4 �(n

2�1
8 )�(n+1

2 ) = �1
(n+2)2�1

8

) 2
n = �1

n2�1
8 8 odd n > 1.

6). Show that all prime divisors of 9n2 + 3n+ 1 are of the form 3k + 1.

Let ↵ = 9n2 + 3n+ 1 = 3(3n2 + n) + 1 ) ↵ ⌘ 1 (mod 3) .
Let p be a prime divisor of ↵,) p 6= 3 from above, and is clearly not 2.
Want to show that p ⌘ 1 (mod 3), 8p prime divisors.
4↵ = 9n2 + 12n+ 4 = (6n2 + 1)2 + 3 ⌘ 0 (mod p)
) (6n2 + 1)2 ⌘ �3 (mod p) which implies that
(�3

p ) = 1

Since p is odd, we know that

(3p)(
p
3) = (�1)

3�1
2

p�1
2 = (�1)

p�1
2 ) (3p) = (�1)

p�1
2 (p3)

Since we also know that (�1
p ) = (�1)

p�1
2 , then:

(�3
p ) = (�1

p )(3p) = (�1)
p�1
2 (�1)

p�1
2 (p3) = (p3)
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Therefore, (p3) = 1, () p ⌘ 1 (mod 3), which is what we want.

7). Let p be an odd prime number.

(a) Show that the function k 7! 1�k
1+k maps the set (Z/pZ)\{�1} to itself and is

a 1-to-1 correspondence.

(b) Compute the sum

Pp�1
k=0(

k
p ).

Part (a)

Consider 1
1+k to be the multiplicative inverse 1 + k in (Z/pZ)\{�1}, we get

(
1

1 + k

)(1 + k) ⌘ 1 (mod p). 1 + k 6⌘ 0 (mod p)

then �p <

1�k
1+k < p 8k = 0, 1, . . . , p� 1.

As �p� p

k  �p < �p+ 1 < 1� k < 1 < p  p+ pk and 1�k
1+k 6= �1

1� k 6= �1� k ) 1�k
1+k 2 (Z/pZ)\{�1}.

So this is a map (Z/pZ)\{�1} 7! (Z/pZ)\{�1}.

For a 1-to-1 correspondence; suppose 1�a
1+a ⌘ 1�b

1+b (mod p).

(1 + b)(1� a) ⌘ (1� b)(1 + a)
1 + b� a� ab ⌘ 1� b+ a� ab (mod p)
2b ⌘ 2a (mod p)
Hence k 7! 1�k

1+k is a 1-to-1 map from (Z/pZ)\{�1} to itself.

Part (b)

For an odd prime p where we know that exactly 1
2 of {1, 2, . . . , p � 1} are quadratic

residues mod p and the other half are not. Let the residues be denoted R1, . . . , R p�1
2

and the non residues denoted by n1, . . . , n p�1
2
. Then

p�1X

k=0

(
k

p

) = (
0

p

) +

p�1
2X

i=1

(
Ri

p

) +

p�1
2X

j=1

(
nj

p

)

= 0 +
p� 1

2
� p� 1

2
= 0
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8).Find the number of solutions to the equation x

2 + y

2 = 1 in Z/pZ.

This is equivalent to finding the number of solutions to x

2 ⌘ 1� y

2 (mod p).

If for a particular y 6⌘ 1, 9x2 such that the above equation is satisfied, then the number

of solutions for this fixed y is 2 (namely ±x), and (1�y2

p ) = 1, that is, number of

solutions for this fixed y is 1 + (1�y2

p ) = 2.

Similarly, if for a particular y 6⌘ 1, 6 9x2 such that the above equation is satisfied, then

there are no solutions for this fixed y, and (1�y2

p ) = �1, that is, number of solutions for

this fixed y is 1 + (1�y2

p ) = 0.

Finally, for y ⌘ 1, the only solution to the above equation is 0, and (1�y2

p ) = 0, as

gcd(1� y

2
, p) 6= 1, that is, number of solutions for y = 0 is 1 + (1�y2

p ) = 1.

Hence, the number of solutions to x

2 ⌘ 1� y

2 (mod p) is the sum of the number of
solutions for fixed y, from y = 0 to y = p� 1, namely;

Pp�1
y=0(1 + (1�y2

p ))
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