"Around the quadratic reciprocity" Tutorial 4 Report

Jamie Khan, Ciaran Brennan, Kevin Coughlan, Rory Higgins, Michael Reynolds

February 17, 2014

Let \mathbf{n} be an odd number, and let $n=p_{1} p_{2} \ldots p_{k}$ be its prime decomposition (possibly with repeated factors). Let us define the Jacobi symbol ($\frac{a}{n}$) by the formula

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \ldots\left(\frac{a}{p_{k}}\right) .
$$

1). Give an example of a and n for which $\left(\frac{a}{n}\right)=1$, but a is not congruent to a square modulo n.

Consider $a=5, n=9$

$$
\text { Then } \begin{aligned}
\left(\frac{5}{9}\right) & =\left(\frac{5}{3}\right)\left(\frac{5}{3}\right) \\
& =\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)=\left(\frac{4}{3}\right)=\left(\frac{1}{3}\right)=1
\end{aligned}
$$

But, $0^{2} \equiv 0,1^{2} \equiv 1,2^{2} \equiv 4, \quad 3^{2} \equiv 0,4^{2} \equiv 7, \quad 5^{2} \equiv 7, \quad 6^{2} \equiv 0,7^{2} \equiv 4,8^{2} \equiv 1$
So $x^{2} \not \equiv 5(\bmod 9)$
2). Show that for Jacobi symbols we have $\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)=\left(\frac{a b}{n}\right)$ and $\left(\frac{a}{n_{1}}\right)\left(\frac{a}{n_{2}}\right)=\left(\frac{a}{n_{1} n_{2}}\right)$ whenever n, n_{1}, n_{2} are odd.

Let $n=p_{1} p_{2} \ldots p_{k}$ be odd then

$$
\begin{aligned}
\left(\frac{a}{n}\right)\left(\frac{b}{n}\right) & =\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \ldots\left(\frac{a}{p_{k}}\right)\left(\frac{b}{p_{1}}\right) \ldots\left(\frac{b}{p_{k}}\right) \\
& =\left(\frac{a}{p_{1}}\right)\left(\frac{b}{p_{1}}\right) \ldots\left(\frac{a}{p_{k}}\right)\left(\frac{b}{p_{k}}\right) \\
& =\left(\frac{a b}{p_{1}}\right) \ldots\left(\frac{a b}{p_{k}}\right)=\left(\frac{a b}{n}\right)
\end{aligned}
$$

Let $n_{1}=p_{1} \ldots p_{k}, n_{2}=q_{1} \ldots q_{k}$,
then $n_{1} n_{2}=p_{1} \ldots p_{k} q_{1} \ldots q_{k}=p_{1} q_{1} \ldots p_{k} q_{k}$

$$
\text { Then } \begin{aligned}
\left(\frac{a}{n_{1}}\right)\left(\frac{a}{n_{2}}\right) & =\left(\frac{a}{p_{1}}\right) \ldots\left(\frac{a}{p_{k}}\right)\left(\frac{a}{q_{1}}\right) \ldots\left(\frac{a}{q_{k}}\right) \\
& =\left(\frac{a}{p_{1}}\right)\left(\frac{a}{q_{1}}\right) \ldots\left(\frac{a}{p_{k}}\right)\left(\frac{a}{q_{k}}\right) \\
& =\left(\frac{a}{n_{1} n_{2}}\right)
\end{aligned}
$$

3). Show that if m and n are odd integers, then $\frac{m n-1}{2} \equiv \frac{m-1}{2}+\frac{n-1}{2}(\bmod 2)$. Explain why it implies that for each odd n we have $\left(\frac{-1}{n}\right)=(-1)^{\frac{n-1}{2}}$

Part 1

$$
\begin{array}{r}
\left(\frac{m n-1}{2}\right) \equiv\left(\frac{m-1}{2}+\frac{n-1}{2}\right)(\bmod 2) \Longleftrightarrow\left(\frac{m n-1}{2}-\frac{(m+n)-2}{2}\right) \equiv 0(\bmod 2) \\
\left(\frac{m n-1}{2}-\frac{(m+n)-2}{2}\right)=\frac{m n-1-(m+n)+2}{2}=\frac{m n-(m+n)+1}{2}=\frac{(m-1)(n-1)}{2}
\end{array}
$$

If $(m-1),(n-1)$ are even $\Rightarrow \frac{(m-1)(n-1)}{2}$ is even.
So $\frac{(m-1)(n-1)}{2} \equiv 0(\bmod 2) \Rightarrow\left(\frac{m n-1}{2}\right) \equiv\left(\frac{m-1}{2}+\frac{n-1}{2}\right)(\bmod 2)$

Part 2

For part 2 we use the fact that for a prime $p:\left(\frac{-1}{p}\right)=-1^{\left(\frac{p-1}{2}\right)}$.
We want $\left(\frac{-1}{n}\right)=-1^{\left(\frac{n-1}{2}\right)}$ for n odd.
$\left(\frac{-1}{n}\right)=\left(\frac{-1}{p_{1}}\right)\left(\frac{-1}{p_{2}}\right) \ldots\left(\frac{-1}{p_{k}}\right)$ where $p_{1} \ldots p_{k}$ is the prime decomposition of n and p_{i} is odd $=-1^{\left(\frac{p_{1}-1}{2}\right)} \cdot-1^{\left(\frac{p_{2}-1}{2}\right)} \ldots-1^{\left(\frac{p_{k}-1}{2}\right)}$
$=-1^{\sum_{i=1}^{k} \frac{p_{i}-1}{2}}$

Now we observe that $\sum_{i=1}^{k} \frac{p_{i}-1}{2} \equiv\left(\frac{p_{1} p_{2} \ldots p_{k}-1}{2}\right)(\bmod 2)$ follows from part 1 by induction, so

$$
-1^{\sum_{i=1}^{k}\left(\frac{p_{i}-1}{2}\right)}=-1^{\frac{p_{1} p_{2} \ldots p_{k}-1}{2}}=-1^{\frac{n-1}{2}}
$$

4). Show that for any two coprime odd integers m, n we have $\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=$ $(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}$.

Let $m=p_{1} \ldots p_{k}$ and $n=q_{1} \ldots q_{l}$
m, n coprime $\Rightarrow q_{i} \neq p_{j}$ for any i, j.

$$
\begin{aligned}
\left(\frac{m}{n}\right) & =\left(\frac{p_{1} \ldots p_{k}}{q_{1} \ldots q_{l}}\right) \\
& =\left(\frac{p_{1}}{q_{1} \ldots q_{l}}\right)\left(\frac{p_{2}}{q_{1} \ldots q_{l}}\right) \ldots\left(\frac{p_{k}}{q_{1} \ldots q_{l}}\right)=\prod_{i=1}^{k}\left(\frac{p_{i}}{q_{1} \ldots q_{l}}\right) \\
\prod_{i=1}^{k}\left(\frac{p_{i}}{q_{1} \ldots q_{l}}\right) & =\prod_{i=1}^{k}\left(\frac{p_{i}}{q_{1}}\right) \prod_{i=1}^{k}\left(\frac{p_{i}}{q_{2}}\right) \ldots \prod_{i=1}^{k}\left(\frac{p_{i}}{q_{l}}\right)
\end{aligned}
$$

Similarly, for $\left(\frac{n}{m}\right)$ we get $\left(\frac{n}{m}\right)=\left(\frac{q_{1} \ldots q_{l}}{p_{1} \ldots p_{k}}\right)=\prod_{j=1}^{l}\left(\frac{q_{j}}{p_{1} \ldots p_{k}}\right)=\prod_{j=1}^{l}\left(\frac{q_{j}}{p_{1}}\right) \prod_{j=1}^{l}\left(\frac{q_{j}}{p_{2}}\right) \ldots \prod_{j=1}^{l}\left(\frac{q_{j}}{p_{k}}\right)$.

$$
\begin{aligned}
\Rightarrow\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) & =\prod_{i=1}^{k}\left(\frac{p_{i}}{q_{1}}\right) \cdots \prod_{i=1}^{k}\left(\frac{p_{i}}{q_{l}}\right) \cdot \prod_{j=1}^{l}\left(\frac{q_{j}}{p_{1}}\right) \ldots \prod_{j=1}^{l}\left(\frac{q_{j}}{p_{k}}\right) \\
& =\left(\prod_{j=1}^{l} \prod_{i=1}^{k}\left(\frac{p_{i}}{q_{j}}\right) \cdot \prod_{i=1}^{k} \prod_{j=1}^{l}\left(\frac{q_{j}}{p_{i}}\right)\right) \quad \text { by quadratic reciprocity law }\left(\frac{p_{i}}{q_{j}}\right)\left(\frac{q_{j}}{p_{i}}\right)=-1^{\left(\frac{p_{i}-1}{2}\right)\left(\frac{q_{j}-1}{2}\right)} \\
& =-1^{\sum_{j=1}^{l} \sum_{i=1}^{k}\left(\frac{p_{i}-1}{2}\right)\left(\frac{q_{j}-1}{2}\right)} \\
& =-1^{\left.\sum_{i=1}^{k}\left(\frac{p_{i}-1}{2}\right) \sum_{j=1}^{l} \frac{q_{j}-1}{2}\right)}
\end{aligned}
$$

And by Question $3 \sum_{i=1}^{k}\left(\frac{p_{i}-1}{2}\right) \equiv \frac{m-1}{2}$.
Similarly for $\sum_{j=1}^{l}\left(\frac{q_{j}-1}{2}\right) \equiv \frac{n-1}{2}$.

$$
\Rightarrow-1^{\left(\frac{m-1}{2}\right)\left(\frac{n-1}{2}\right)}=\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)
$$

5). Applying previous problem with $m=n+2$, show that for each odd n we have $\left(\frac{2}{n}\right)=(-1)^{\frac{n^{2}-1}{8}}$.
$\left(\frac{n+2}{n}\right)\left(\frac{n}{n+2}\right) \Rightarrow$ for odd $n,\left(\frac{2}{n}\right)=-1^{\frac{n^{2}-1}{8}}$
Our argument will rely on induction on n. Take $n=3,\left(\frac{2}{3}\right)=-1^{1}=-1^{\frac{9-1}{8}}$, true for $n=3$.
$\left(\frac{n+2}{n}\right)\left(\frac{n}{n+2}\right)=-1^{\left(\frac{n+2-1}{2}\right) \cdot\left(\frac{n-1}{2}\right)}=-1^{\frac{n^{2}-1}{4}}$
Observe that $\left(\frac{n+2}{n}\right)=\left(\frac{2}{n}\right)$ and $\left(\frac{n}{n+2}\right)=\left(\frac{-2}{n+2}\right)=\left(\frac{2}{n+2}\right)\left(\frac{-1}{n+2}\right)$
We have $\left(\frac{2}{n}\right)\left(\frac{2}{n+2}\right)\left(\frac{-1}{n+2}\right)=-1^{\frac{n^{2}-1}{4}}$
Assume $\left(\frac{2}{n}\right)=-1^{\frac{n^{2}-1}{8}}$ and $\frac{-1}{n+2}=-1^{\left(\frac{(n+2)-1}{2}\right)}$ by Question 3 .

$$
\begin{aligned}
& \Rightarrow \frac{2}{n+2} \\
&\left(-1^{\frac{n^{2}-1}{8}}\right)\left(-1^{\left(\frac{n+1}{2}\right)}\right)=-1^{\frac{n^{2}-1}{4}} \\
& \frac{2}{n+2} \\
& \Rightarrow \quad \frac{2}{n} \quad=-1^{\frac{n^{2}-1}{4}-\left(\frac{n^{2}-1}{8}\right)-\left(\frac{n+1}{2}\right)}=-1^{\frac{(n+2)^{2}-1}{8}} \\
& \frac{n^{2}-1}{8} \quad \forall \text { odd } n>1 .
\end{aligned}
$$

6). Show that all prime divisors of $9 n^{2}+3 n+1$ are of the form $3 k+1$.

Let $\alpha=9 n^{2}+3 n+1=3\left(3 n^{2}+n\right)+1 \Rightarrow \alpha \equiv 1(\bmod 3)$.
Let p be a prime divisor of $\alpha, \Rightarrow p \neq 3$ from above, and is clearly not 2 .
Want to show that $p \equiv 1(\bmod 3), \forall p$ prime divisors.
$4 \alpha=9 n^{2}+12 n+4=\left(6 n^{2}+1\right)^{2}+3 \equiv 0(\bmod \mathrm{p})$
$\Rightarrow\left(6 n^{2}+1\right)^{2} \equiv-3(\bmod \mathrm{p})$ which implies that
$\left(\frac{-3}{p}\right)=1$
Since p is odd, we know that

$$
\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{\frac{3-1}{2} \frac{p-1}{2}}=(-1)^{\frac{p-1}{2}} \Rightarrow\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right)
$$

Since we also know that $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$, then:

$$
\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right)=\left(\frac{p}{3}\right)
$$

Therefore, $\left(\frac{p}{3}\right)=1, \Longleftrightarrow p \equiv 1(\bmod 3)$, which is what we want.
7). Let p be an odd prime number.
(a) Show that the function $k \mapsto \frac{1-k}{1+k}$ maps the set $(Z / p Z) \backslash\{-1\}$ to itself and is a 1-to-1 correspondence.
(b) Compute the sum $\sum_{k=0}^{p-1}\left(\frac{k}{p}\right)$.

Part (a)
Consider $\frac{1}{1+k}$ to be the multiplicative inverse $1+k$ in $(Z / p Z) \backslash\{-1\}$, we get

$$
\left(\frac{1}{1+k}\right)(1+k) \equiv 1 \quad(\bmod p) . \quad 1+k \not \equiv 0 \quad(\bmod p)
$$

then $-p<\frac{1-k}{1+k}<p \quad \forall k=0,1, \ldots, p-1$.
As $-p-p^{k} \leq-p<-p+1<1-k<1<p \leq p+p k$ and $\frac{1-k}{1+k} \neq-1$
$1-k \neq-1-k \Rightarrow \frac{1-k}{1+k} \in(Z / p Z) \backslash\{-1\}$.
So this is a $\operatorname{map}(Z / p Z) \backslash\{-1\} \mapsto(Z / p Z) \backslash\{-1\}$.
For a 1-to-1 correspondence; suppose $\frac{1-a}{1+a} \equiv \frac{1-b}{1+b}(\bmod p)$.
$(1+b)(1-a) \equiv(1-b)(1+a)$
$1+b-a-a b \equiv 1-b+a-a b(\bmod p)$
$2 b \equiv 2 a(\bmod p)$
Hence $k \mapsto \frac{1-k}{1+k}$ is a 1-to-1 map from $(Z / p Z) \backslash\{-1\}$ to itself.

Part (b)
For an odd prime p where we know that exactly $\frac{1}{2}$ of $\{1,2, \ldots, p-1\}$ are quadratic residues $\bmod p$ and the other half are not. Let the residues be denoted $R_{1}, \ldots, R_{\frac{p-1}{2}}$ and the non residues denoted by $n_{1}, \ldots, n_{\frac{p-1}{2}}$. Then

$$
\begin{aligned}
\sum_{k=0}^{p-1}\left(\frac{k}{p}\right) & =\left(\frac{0}{p}\right)+\sum_{i=1}^{\frac{p-1}{2}}\left(\frac{R_{i}}{p}\right)+\sum_{j=1}^{\frac{p-1}{2}}\left(\frac{n_{j}}{p}\right) \\
& =0+\frac{p-1}{2}-\frac{p-1}{2}=0
\end{aligned}
$$

8). Find the number of solutions to the equation $x^{2}+y^{2}=1$ in $\mathbf{Z} / \mathbf{p Z}$.

This is equivalent to finding the number of solutions to $x^{2} \equiv 1-y^{2}(\bmod \mathrm{p})$.
If for a particular $y \not \equiv 1, \exists x^{2}$ such that the above equation is satisfied, then the number of solutions for this fixed y is 2 (namely $\pm x$), and $\left(\frac{1-y^{2}}{p}\right)=1$, that is, number of solutions for this fixed y is $1+\left(\frac{1-y^{2}}{p}\right)=2$.

Similarly, if for a particular $y \not \equiv 1, \nexists x^{2}$ such that the above equation is satisfied, then there are no solutions for this fixed y, and $\left(\frac{1-y^{2}}{p}\right)=-1$, that is, number of solutions for this fixed y is $1+\left(\frac{1-y^{2}}{p}\right)=0$.

Finally, for $y \equiv 1$, the only solution to the above equation is 0 , and $\left(\frac{1-y^{2}}{p}\right)=0$, as $\operatorname{gcd}\left(1-y^{2}, p\right) \neq 1$, that is, number of solutions for $y=0$ is $1+\left(\frac{1-y^{2}}{p}\right)=1$.

Hence, the number of solutions to $x^{2} \equiv 1-y^{2}(\bmod \mathrm{p})$ is the sum of the number of solutions for fixed y, from $y=0$ to $y=p-1$, namely;
$\sum_{y=0}^{p-1}\left(1+\left(\frac{1-y^{2}}{p}\right)\right)$

