Tutorial Solutions: Week 6

Orlagh Carroll, Sile Tiernan, Ciara Moynihan, Colm O'Shaughnessy, Conor Hughes

February 23, 2014

1 Question 1

 $x^2 \equiv a \mod p^n$ has 2 solutions: One solution is when p is odd and the other is when a, p are coprime.

Suppose $x^2 = y^2 \equiv a \mod p^n$ $x^2 - y^2 = (x + y)(x - y) \equiv 0 \mod p^n$ $p^n \mid (x - y)(x + y) \Rightarrow p \mid (x - y)(x + y)$

If p | (x + y) and p | (x - y) \Rightarrow p | 2x (their sum) and p | -2y (their difference)

We know $x^2 = kp^n + a$ $p \mid x \Rightarrow p \mid x^2 \Rightarrow p \mid a$ which is not true as $gcd(a,p) = 1 \Rightarrow p \not|x$ and $p \not|y$

It follows $p \mid (x + y)$ or $p \mid (x - y)$ but not both. Since $p^n \mid (x + y)(x - y) \Rightarrow p^n \mid (x + y)$ or $p^n \mid (x - y)$ (but not both).

So we have: $x \equiv y \mod p^n$ or $-x \equiv y \mod p^n$

2 Question 2

Find all solutions to the congruence $x^2 \equiv 2 \pmod{7^4}$

Let $f(x) = x^2 - 2$. Now we are looking to find x such that

 $f(x) \equiv 0(mod7^4)$

First, let us find x such that $f(x) \equiv 0 \pmod{7}$ The values for x that satisfy this are x = 3, x = 4.

Now let's check if $f'(x) \equiv 0 \pmod{7}$ in both cases.

This is not true, as f'(x) = 2x, and $2^*3 = 6$, $2^*4 = 8$, are obviously not divisible by 7. Hence we can use hensel's lemma.

We will now lift one of our answers for x, x = 3. We will write our new solution x = 3 + 7K, and we will find a solution for $f(x) \equiv 0 \mod 7^2$ now. We find: $x^2 = 9 + 6 * 7k + 7^2K * 2$.

As the last term is divisible by 7^2 , we can cancel it from the equation (as we are working modulo 7^2).

Taking 2 away from both sides and rearranging leaves us with:

 $x^2 - 2 = (6k + 1)7$. This is divisible by 7^2 when 6k + 1 is divisible by 7.

This is true for k = 1, so our new solution is x = 3 + 7(1) = 10. $f'(x) \neq 0 \pmod{7^2}$ in this case once again, so we can apply hensel's lemma once again for 7^3

Writing our new solution as $3+7+7^2k$, we find x^2 once agan and subtract two from both sides to get our $x^2 - 2$ expression.

Any expression with a coefficient of 7^3 or higher can be ignored as this will be divisible by 7^3 . Simplifying we get:

 $x^2 - 2 = 7^2(6k + 2).$

This is divisible by 7^3 when 6k + 2 is divisible by 7. This true for k = 2. So our solution for x here is $x = 3 + 7 + (2)7^2$. Once again we can check the value of f'(x) and it is not divisible by 7.

So we can apply Hensel's lemma once more.

Writing our new solution as $x = 3 + 7 + (2)7^2 + 7^3(k)$, we wish to find x such that $f(x) \equiv 0 \pmod{7^4}$.

We first find: $x^2 - 2 = 7^3(6k + 6)$. This is divisible by 7⁴ when 6k + 6 is divisible by 7. This is true for k = 6.

So our final solution for $x = 3 + 7(1) + (2)7^2 + (6)7^3 = 2166$.

The second solution for x can be found using the same proceedure except with x = 4 as the original answer, or using $x_2 = 7^4 - x_1$. Using this relation and setting $x_1 = 2166$, we get $x_2 = 235$

Solutions; x = 2166, x = 235

3 Question 3

Find all solutions to the congruence $x^2 \equiv -3 \mod(13^3)$. $x^2 \equiv -3 \mod(13^3)$ $x^2 \equiv -3 \mod(13^3)$ $x^2 \equiv -3 \mod(13^3)$ has solutions $x = \pm 6, x = 6, 7$ $f(x) = x^2 + 3$ $f'(x) = 2x \neq 0$ for x = 6, 7 so Hensel's Lemma applies and we can lift. y = 6 + 13k $y^2 = 36 + 156k + 169k^2 \equiv (36 + 156k) \mod(13^2)$ $y^2 + 3 \equiv (39 + 156k) \equiv 39(1 + 4k)$ so k = 3 y = 45 $z = 45 + j13^2$ $z^2 \equiv 2025 + 15216j \mod(13^3)$ $z^2 + 3 \equiv 2028 + 15210j \mod(13^3)$ j = 12 $x = 6 + 3(13) + 12(13^2) = 2073$ The second solution for x: $x = 13^3 - 2073 = 124$

4 Question 4

Let $f(x)=(x^2-2)(x^2-17)(x^2-34)$. $p \neq 2, 17$. Therefore the gcd(2,p)=gcd(17,p)=1. If $\left(\frac{2}{p}\right)=1$, then $x^2-2\equiv 0 \mod p$ has solutions.. If $\left(\frac{17}{p}\right)=1$, then $x^2-17\equiv 0 \mod p$ has solutions. If $\left(\frac{34}{p}\right) = \left(\frac{17}{p}\right) = -1$, then $\left(\frac{34}{p}\right) = \left(\frac{2}{p}\right)$. $\left(\frac{17}{p}\right) = 1$ and $x^2 - 34 \equiv 0 \mod p$ has solutions. $f'(x) = 2x(x^2 - 2)(x^2 - 17) + 2x(x^2 - 34)(x^2 - 2) + 2x(x^2 - 17)(x^2 - 34)$. Therefore $f'(x) \neq 0$ because, for example, if $x^2 - 2 \equiv 0 \mod p$ has solution x=a then a term is left over: $f'(a) = 2a(a^2 - 17)(a^2 - 34) \mod p$. Hence we can apply Hensel's Lemma for higher powers.

5 Question 5

For p=17, $f(x)=(x^2-2)(x^2-17)(x^2-34) \equiv x^4(x^2-2) \mod 17$. x = 6 is a root of $(x^2-2) \equiv 0 \mod 17$. $f'(6) = 2.6 \neq 0 \mod 17$. Hence we can then apply Hensel's Lemma.

For p = 2, $f(x) = x^4(x^2 - 17) \mod 2$ with x=1 as a solution. x=1 is also a solution for $f(x) \mod 4$, $f(x) \mod 8$, $f(x) \mod 16$ but not for $f(x) = (x^2 - 2)^2(x - 17) \mod 32$. $f(x) = (x^2 - 2)^2(x - 17) \mod 32$ has root x = 7. Therefore $f'(7) = 2 \mod 4$.

Hence, we have found a root by Hensel's Lemma for all n5 and a root for n=1,2,3,4.

6 Question 6

 $(x^3 - 37)(x^2 + 3), p \neq 2, 3$ then $x^2 + 3$ has roots $\iff (\frac{-3}{p}) = 1$ We know that $(\frac{-3}{p}) = (\frac{p}{3})$ from last week's tutorial.

 $p \equiv 1 \pmod{3} \Longrightarrow \left(\frac{p}{3}\right) = 1 \Longrightarrow \left(\frac{-3}{p}\right) = 1$ So $\exists x \text{ such that } x^2 + 3 \equiv 0 \pmod{p}$ and $x \not\equiv 0 \pmod{p}$ We can lift these roots (mod p^n) by Hensel's Lemma.

 $p \not\equiv 1 \pmod{3} \implies x \longmapsto x^3 \text{ on } (Z/pZ)^{\times}$ is injective. $x^3 \equiv y^3 \pmod{p}, x, y \in (Z/pZ)^{\times}$ $(xy^{-1})^3 \equiv \pmod{p}$ xy^{-1} is of order 1 or 3, but can't be of order three, by Lagrange's Theorem $\implies xy^{-1} = 1, x = y$ is an injective map of a finite set to itself and is therefore

also surjective

so $x^3 - 37$ has roots wherever $p \not\equiv 1 \pmod{3}$ and by Hensel's lemma $(x^3 - 37)(x^2 + 3)$ has roots in $(Z/p^n Z)$ for all n when $p \neq 2,3$.

7 Question 7

p=2

agrees with the above solution as $2 \neq 1 \pmod{3}$ and Hensel's Lemma applies and $(x^3 - 37)(x^2 + 3)$ has roots in $(Z/p^n Z)$ for all n when p=2.

p=3 $x^3 - 37, x = 4: 4^3 - 37 = 64 - 37 = 3^3$ $f'(x) = 3x^2$ is only divisible by 3^1 when x=4so once again we can apply Hensel's Lemma and conclude that $(x^3 - 37)(x^2 + 3)$ has roots in (Z/p^nZ) for all n when p=3.