Tutorial Solutions: Week 6

Orlagh Carroll, Sile Tiernan, Ciara Moynihan, Colm O'Shaughnessy, Conor Hughes

February 23, 2014

1 Question 1

$x^{2} \equiv \operatorname{amod} p^{n}$ has 2 solutions:
One solution is when p is odd and the other is when a, p are coprime.
Suppose $x^{2}=y^{2} \equiv a \bmod p^{n}$
$x^{2}-y^{2}=(x+y)(x-y) \equiv 0 \bmod p^{n}$
$p^{n}|(\mathrm{x}-\mathrm{y})(\mathrm{x}+\mathrm{y}) \Rightarrow p|(\mathrm{x}-\mathrm{y})(\mathrm{x}+\mathrm{y})$
If $\mathrm{p} \mid(\mathrm{x}+\mathrm{y})$ and $\mathrm{p}|(\mathrm{x}-\mathrm{y}) \Rightarrow \mathrm{p}| 2 x$ (their sum) and $\mathrm{p} \mid-2 \mathrm{y}$ (their difference)

We know $x^{2}=k p^{n}+a$
$p|\mathrm{x} \Rightarrow \mathrm{p}| x^{2} \Rightarrow \mathrm{p} \mid$ a which is not true as $\operatorname{gcd}(\mathrm{a}, \mathrm{p})=1 \Rightarrow p \nmid x$ and $p \nmid y$
It follows $\mathrm{p} \mid(\mathrm{x}+\mathrm{y})$ or $\mathrm{p} \mid(\mathrm{x}-\mathrm{y})$ but not both.
Since $p^{n}\left|(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y}) \Rightarrow p^{n}\right|(\mathrm{x}+\mathrm{y})$ or $p^{n} \mid(\mathrm{x}-\mathrm{y})$ (but not both).
So we have:
$\mathrm{x} \equiv \mathrm{y} \bmod p^{n}$ or
$-\mathrm{x} \equiv \mathrm{y} \bmod p^{n}$

2 Question 2

Find all solutions to the congruence $x^{2} \equiv 2\left(\bmod 7^{4}\right)$

Let $f(x)=x^{2}-2$. Now we are looking to find x such that

$$
f(x) \equiv 0\left(\bmod 7^{4}\right)
$$

First, let us find x such that $f(x) \equiv 0(\bmod 7)$
The values for x that satisfy this are $x=3, x=4$.
Now let's check if $f \prime(x) \equiv 0(\bmod 7)$ in both cases.
This is not true, as $f \prime(x)=2 x$, and $2 * 3=6,2 * 4=8$, are obviously not divisible by 7 . Hence we can use hensel's lemma.

We will now lift one of our answers for $x, x=3$. We will write our new solution $x=3+7 K$, and we will find a solution for $f(x) \equiv 0 \bmod 7^{2}$ now. We find: $x^{2}=9+6 * 7 k+7^{2} K * 2$.

As the last term is divisible by 7^{2}, we can cancel it from the equation (as we are working modulo 7^{2}).

Taking 2 away from both sides and rearranging leaves us with:
$x^{2}-2=(6 k+1) 7$. This is divisible by 7^{2} when $6 k+1$ is divisible by 7 .
This is true for $\mathrm{k}=1$, so our new solution is $x=3+7(1)=10$. $f \prime(x) \neq 0\left(\bmod ^{2}\right)$ in this case once again, so we can apply hensel's lemma once again for 7^{3}

Writing our new solution as $3+7+7^{2} k$, we find x^{2} once agan and subtract two from both sides to get our $x^{2}-2$ expression.

Any expression with a coefficient of 7^{3} or higher can be ignored as this will be divisible by 7^{3}. Simplifying we get:

$$
x^{2}-2=7^{2}(6 k+2) .
$$

This is divisible by 7^{3} when $6 \mathrm{k}+2$ is divisible by 7 . This true for $\mathrm{k}=2$. So our solution for x here is $x=3+7+(2) 7^{2}$. Once again we can check the value of $f \prime(x)$ and it is not divisible by 7 .

So we can apply Hensel's lemma once more.

Writing our new solution as $x=3+7+(2) 7^{2}+7^{3}(k)$, , we wish to find x such that $f(x) \equiv 0\left(\bmod 7^{4}\right)$.

We first find: $x^{2}-2=7^{3}(6 k+6)$. This is divisibe by 7^{4} when $6 k+6$ is divisible by 7 . This is true for $\mathrm{k}=6$.

So our final solution for $x=3+7(1)+(2) 7^{2}+(6) 7^{3}=2166$.
The second solution for x can be found using the same proceedure except with $\mathrm{x}=4$ as the original answer, or using $x_{2}=7^{4}-x_{1}$. Using this relation and setting $x_{1}=2166$, we get $x_{2}=235$

Solutions; $x=2166, x=235$

3 Question 3

Find all solutions to the congruence $x^{2} \equiv-3 \bmod \left(13^{3}\right)$.
$x^{2} \equiv-3 \bmod \left(13^{3}\right)$
$x^{2} \equiv-3 \bmod 13$ has solutions $x= \pm 6, x=6,7$
$f(x)=x^{2}+3$
$f^{\prime}(x)=2 x \neq 0$ for $x=6,7$ so Hensel's Lemma applies and we can lift.
$y=6+13 k$
$y^{2}=36+156 k+169 k^{2} \equiv(36+156 k) \bmod \left(13^{2}\right)$
$y^{2}+3 \equiv(39+156 k) \equiv 39(1+4 k)$
so $k=3 \quad y=45$
$z=45+j 13^{2}$
$z^{2} \equiv 2025+15216 j \bmod \left(13^{3}\right)$
$z^{2}+3 \equiv 2028+15210 j \bmod \left(13^{3}\right)$
$j=12$
$x=6+3(13)+12\left(13^{2}\right)=2073$
The second solution for x : $x=13^{3}-2073=124$

4 Question 4

Let $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}-2\right)\left(x^{2}-17\right)\left(x^{2}-34\right) \cdot p \neq 2,17$. Therefore the $\operatorname{gcd}(2, \mathrm{p})=\operatorname{gcd}(17, \mathrm{p})=1$.
If $\left(\frac{2}{p}\right)=1$, then $x^{2}-2 \equiv 0 \bmod p$ has solutions..
If $\left(\frac{17}{p}\right)=1$, then $x^{2}-17 \equiv 0 \bmod p$ has solutions.

If $\left(\frac{34}{p}\right)=\left(\frac{17}{p}\right)=-1$, then $\left(\frac{34}{p}\right)=\left(\frac{2}{p}\right)$.
$\left(\frac{17}{p}\right)=1$ and $x^{2}-34 \equiv 0 \bmod p$ has solutions.
$f^{\prime}(x)=2 x\left(x^{2}-2\right)\left(x^{2}-17\right)+2 x\left(x^{2}-34\right)\left(x^{2}-2\right)+2 x\left(x^{2}-17\right)\left(x^{2}-34\right)$.
Therefore $f^{\prime}(x) \neq 0$ because, for example, if $x^{2}-2 \equiv 0 \bmod p$ has solution $\mathrm{x}=\mathrm{a}$ then a term is left over: $f^{\prime}(a)=2 a\left(a^{2}-17\right)\left(a^{2}-34\right) \bmod p$.
Hence we can apply Hensel's Lemma for higher powers.

5 Question 5

For $\mathrm{p}=17, \mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}-2\right)\left(x^{2}-17\right)\left(x^{2}-34\right) \equiv x^{4}\left(x^{2}-2\right) \bmod 17$.
$x=6$ is a root of $\left(x^{2}-2\right) \equiv 0 \bmod 17$.
$f^{\prime}(6)=2.6 \neq 0 \bmod 17$. Hence we can then apply Hensel's Lemma.
For $p=2, f(x)=x^{4}\left(x^{2}-17\right) \bmod 2$ with $\mathrm{x}=1$ as a solution.
$\mathrm{x}=1$ is also a solution for $f(x) \bmod 4, f(x) \bmod 8, f(x) \bmod 16$ but not for $f(x)=$ $\left(x^{2}-2\right)^{2}(x-17) \bmod 32$.
$f(x)=\left(x^{2}-2\right)^{2}(x-17) \bmod 32$ has root $x=7$. Therefore $f^{\prime}(7)=2 \bmod 4$.
Hence, we have found a root by Hensel's Lemma for all $n 5$ and a root for $\mathrm{n}=1,2,3,4$.

6 Question 6

$\left(x^{3}-37\right)\left(x^{2}+3\right), p \neq 2,3$ then $x^{2}+3$ has roots $\Longleftrightarrow\left(\frac{-3}{p}\right)=1$
We know that $\left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right)$ from last week's tutorial.

$$
p \equiv 1(\bmod 3) \Longrightarrow\left(\frac{p}{3}\right)=1 \Longrightarrow\left(\frac{-3}{p}\right)=1
$$

So $\exists x$ such that $x^{2}+3 \equiv 0(\bmod p)$ and $x \not \equiv 0(\bmod p)$
We can lift these roots $\left(\bmod p^{n}\right)$ by Hensel's Lemma.
$p \not \equiv 1(\bmod 3) \Longrightarrow x \longmapsto x^{3}$ on $(Z / p Z)^{\times}$is injective.
$x^{3} \equiv y^{3}(\bmod p), x, y \in(Z / p Z)^{\times}$
$\left(x y^{-1}\right)^{3} \equiv(\bmod p)$
$x y^{-1}$ is of order 1 or 3 , but can't be of order three, by Lagrange's Theorem $\Longrightarrow x y^{-1}=1, x=y$ is an injective map of a finite set to itself and is therefore also surjective
so $x^{3}-37$ has roots wherever $\mathrm{p} \not \equiv 1(\bmod 3)$ and by Hensel's lemma $\left(x^{3}-\right.$ $37)\left(x^{2}+3\right)$ has roots in $\left(Z / p^{n} Z\right)$ for all n when $\mathrm{p} \neq 2,3$.

7 Question 7

$\mathrm{p}=2$
agrees with the above solution as $2 \not \equiv 1(\bmod 3)$ and Hensel's Lemma applies and $\left(x^{3}-37\right)\left(x^{2}+3\right)$ has roots in $\left(Z / p^{n} Z\right)$ for all n when $\mathrm{p}=2$.

$$
\mathrm{p}=3
$$

$x^{3}-37, x=4: 4^{3}-37=64-37=3^{3}$
$f^{\prime}(x)=3 x^{2}$ is only divisible by 3^{1} when $\mathrm{x}=4$
so once again we can apply Hensel's Lemma and conclude that $\left(x^{3}-37\right)\left(x^{2}+\right.$
3) has roots in $\left(Z / p^{n} Z\right)$ for all n when $\mathrm{p}=3$.

