Tutorial 6

Question 1

(a, b, c) is a solution to $x^{2}+y^{2}+z^{2}=2 x y z$
$a^{2}+b^{2}+c^{2}$ is even if two of a, b, c are odd or if all are even
Assume $a^{2} \equiv b^{2} \equiv 1 \bmod 4$ and $c^{2} \equiv 0 \bmod 4$
then we have $2 a b c \equiv 0 \bmod 4$ and $a^{2}+b^{2}+c^{2} \equiv 2 \bmod 4$, a contradiction.
$\therefore a, b, c$ are all even.
let $a=2 p, b=2 q, c=2 r$ then $p^{2}+q^{2}+r^{2}=4 p q r$
It is clear that you can iterate the argument so $P^{2}+Q^{2}+R^{2}=2^{k} p q r$
but this cannot continue indefinitely as P, Q and R get smaller and the RHS gets larger
$\therefore P=Q=R=0$ and the only solution is $(0,0,0)$

Question 2

(a, b, c) is a solution to $x^{2}+y^{2}+z^{2}=2 x y z$
Case 1: $3 \nmid a, 3 \mid b, c$
$a^{2} \equiv 1(\bmod 3)$
$b^{2} \equiv 0(\bmod 3)$
$a^{2}+b^{2}+c^{2}=/=0(\bmod 3)$
(Note: This is also true if 3 does not divide a and b , but divides c)
Case 2: $3 \nmid a, b, c$
$a^{2} \equiv b^{2} \equiv c^{2} \equiv 1(\bmod 3)$
$a b c \equiv 0(\bmod 3)$
To show there is one-to-one correspondence, let: $3 p=a, 3 q=b, 3 r=c$
$9 p^{2}+9 q^{2}+9 r^{2}=27 p q r$
$p^{2}+q^{2}+r^{2}=3 p q r$

Question 3

Case $p=2$:
$x^{4}+1=\left(x^{2}+1\right)^{2}-2 x^{2} \equiv\left(x^{2}+1\right)^{2} \bmod 2$
Case p odd, $p \equiv 1 \bmod 4 \therefore p=4 k+1$, some k :
$(-1 / p)=(-1)^{(p-1) / 2}=1$
there exists y such that $y^{2} \equiv(-1) \bmod p$
$x^{4}+1=x^{4}-(-1) \equiv x^{4}-y^{2} \bmod p$
$\therefore\left(x^{2}-y\right)\left(x^{2}+y\right) \bmod p$
$\mathrm{p} \equiv 3 \bmod p \therefore p=4 k+3$, some k
$(-1 / p)=(-1)^{2 k+1}=-1(2 / p)=(-1)^{\left(11 k^{2}+24 k+8\right) / 8}=1$ if k is odd, -1 if k is even. For k odd:
$x^{4}+1=\left(x^{2}+1\right)^{2}-2 x^{2} \equiv\left(x^{2}+1\right)^{2}-\left(x^{2}\right)\left(y^{2}\right) \bmod p \equiv\left(x^{2}-1-x y\right)\left(x^{2}+\right.$ $1+x y) \bmod p$
For k even:
$(-2 / p)=(-1 / p)(2 / p)=(-1)(-1)=1$
$x^{4}+1=\left(x^{2}-1\right)^{2}-\left(-2 x^{2}\right) \equiv\left(\left(x^{2}-1\right)^{2}-\left(y^{2}\right)\left(x^{2}\right) \equiv\left(x^{2}-1-x y\right)\left(x^{2}-1+x p\right)\right.$
$\bmod p$

Question 4

Let f be the function defined by $f(x)=x^{4}+1$
Then: $f(x+1)=x^{4}+4 x^{3}+6 x^{2}+4 x+2$
Using Eisenstein's Criterion with $p=2$ we get:
$p \mid 4,6,4,2$
$p \nmid 1$
$p^{2} \nmid 2$
$\therefore f(x+1)$ is irreducible in $\mathbb{Q}[\mathrm{x}]$
Hence, $f(x)$ is irreducible in $\mathbb{Q}[\mathrm{x}]$
\therefore by Gauss' Lemma $\mathrm{f}(\mathrm{x})$ is irreducible in $\mathbb{Z}[\mathrm{x}]$

Question 5

Let $f(x)=x^{n}+p x+b p^{2}, p$ is a prime number, and $\operatorname{gcd}(b, p)=1$, then $p_{0}=\left(0, \alpha_{0}\right)=(0,2), p_{1}=\left(1, \alpha_{1}\right)=(1,1), p_{n}=\left(n, \alpha_{n}\right)=(n, 0)$. Since f can be written as $f(x)=a_{n} p^{\alpha_{n}} x^{n}+a_{1} p^{\alpha_{1}} x+a_{0} p^{\alpha_{0}}$ with $\alpha_{n}=0, \alpha_{1}=1, \alpha_{0}=2, a_{0}{ }^{\prime}=b, a_{1}{ }^{\prime}=0$ and $a_{n}{ }^{\prime}=0$.

Then constructing Newton diagram of f modulo p .

Write $f(x)=(x+c)\left(x^{n-1}+p\right)$ with $c x^{n-1}+c p=b p^{2}$,
by Dumas theorem,
if $c \in \mathbb{Z}$, the edge diagram of f is the centre of diagrams of $(x+c)$ and $\left(x^{n-1}+p\right)$, i.e. $f(x)$ has an interger root if $c \notin \mathbb{Z}$, it is irreducible over integers.
\therefore As required.

Question 6

We have:

$$
f(x)=9 x^{n}+6\left(x^{n-1}+x^{n-2}+\cdots+x^{2}+x\right)+4
$$

And we would like to show that f is irreducible in \mathbb{Z}.
We will construct the Newton diagrams of f for $p=2$ and $p=3$ as these are
the only primes whose positive powers divide at least some of the coefficients of
f and hence will produce useful Newton diagrams with respect to reducibility.

For each of the following cases of p we desire the form of f to be

$$
f(x)=a_{n} p^{\gamma_{n}} x^{n}+a_{n-1} p^{\gamma_{n-1}} x^{n-1}+\cdots+a_{1} p^{\gamma_{1}} x+a_{0} p^{\gamma_{0}}
$$

Case where $p=2$:
Keeping the desired form of f in mind,

$$
f(x)=9 \cdot 2^{0}+3 \cdot 2^{1}\left(x^{n-1}+\cdots+x\right)+1 \cdot 2^{2}
$$

For the Newton diagram we plot the points $\left(n, \gamma_{n}\right)$. These are

$$
(0,2),(1,1),(2,1), \ldots,(n-1,1),(n, 0)
$$

Giving the Newton diagram:

And hence the edge diagram:

Case where $p=3$:

$$
f(x)=1 \cdot 3^{2} x^{n}+2 \cdot 3^{1}\left(x^{n-1}+\cdots+x\right)+4 \cdot 3^{0}
$$

Newton Diagram:

Edge Diagram:

Now note that the edge diagram of a product of functions is the union of the edge
diagrams of those functions. So if $f=g h$ then f having an edge diagram consisting of two edges, one of degree 1 and the other of degree $n-1$, implies
that $\operatorname{deg}(g)=1$ and $\operatorname{deg}(h)=n-1$.
Hence, we can assume that g and h have the form

$$
g=a x+b
$$

and

$$
h=c x^{n-1}+\sum_{i=1}^{n-2} \alpha_{i} x^{i}+d
$$

And then by the values of the coefficients of f it is clear that

$$
g= \pm 3 x \pm 2
$$

and

$$
h= \pm 3 x^{n-1} \pm \sum_{i=1}^{n-2} \alpha_{i} x^{i} \pm 2
$$

Where we have either all coefficients are positive or all are negative.
So $(\pm 3 x \pm 2)$ is a factor of f.
So $f\left(\frac{-2}{3}\right)=0$

$$
\begin{aligned}
& \quad f\left(\frac{-2}{3}\right)=9\left(\frac{-2}{3}\right)^{n}+6\left(\sum_{i=1}^{n-1}\left(\frac{-2}{3}\right)^{i}\right)+4=0 \\
& \frac{(-2)^{n}}{3^{n-2}}-4+\sum_{i=2}^{n-1} \frac{2(-2)^{i}}{3^{i-1}}+4=0 \\
& \sum_{i=2}^{n-1} \frac{2(-2)^{i}}{3^{i-1}}=\frac{-(-2)^{n}}{3^{n-2}} \\
& \sum_{i=2}^{n-2} \frac{2(-2)^{i}}{3^{i-1}}=\frac{-(-2)^{n}}{3^{n-2}}-\frac{2(-2)^{n}}{3^{n-2}} \\
& =\frac{-(-2)^{n}+(-2)^{n}}{3^{n-2}}=0
\end{aligned}
$$

And so we have that

$$
\sum_{i=2}^{n-2} \frac{2(-2)^{i}}{3^{i-1}}=0
$$

a contradiction.
So our supposition that f is of the form $f=g h$ is false, so f is irreducible in \mathbb{Z}.

Question 7

Assume f, g non constant
As $f^{3}-g^{2}=1, f^{3}$ and g^{2} have the same degree.
$a=\operatorname{deg}\left(f^{3}\right)=\operatorname{deg}\left(g^{2}\right)$ so $a=3 \operatorname{deg}(f)=2 \operatorname{deg}(g)$
f, g are coprime so

$$
a \leq \operatorname{No}(f, g,(-1))-1=\operatorname{No}(f g)-1 \leq a / 3+a / 2-1=5 a / 6-1
$$

by Mason-Stothers theorem
which implies $a / 6 \leq-1$
this is a contradiction,
$\therefore f, g$ are constant

