Tutorial 6

Question 1

(a, b, c) is a solution to $x^2 + y^2 + z^2 = 2xyz$ $a^2 + b^2 + c^2$ is even if two of a, b, c are odd or if all are even Assume $a^2 \equiv b^2 \equiv 1 \mod 4$ and $c^2 \equiv 0 \mod 4$ then we have $2abc \equiv 0 \mod 4$ and $a^2 + b^2 + c^2 \equiv 2 \mod 4$, a contradiction. $\therefore a, b, c$ are all even. let a = 2p, b = 2q, c = 2r then $p^2 + q^2 + r^2 = 4pqr$ It is clear that you can iterate the argument so $P^2 + Q^2 + R^2 = 2^k pqr$ but this cannot continue indefinitely as P, Q and R get smaller and the RHS gets larger $\therefore P = Q = R = 0$ and the only solution is (0, 0, 0)

Question 2

(a, b, c) is a solution to $x^2 + y^2 + z^2 = 2xyz$

Case 1: $3 \nmid a, 3 \mid b, c$ $a^2 \equiv 1 \pmod{3}$ $b^2 \equiv 0 \pmod{3}$ $a^2 + b^2 + c^2 = / = 0 \pmod{3}$ (Note: This is also true if 3 does not divide a and b, but divides c)

Case 2: $3 \nmid a, b, c$ $a^2 \equiv b^2 \equiv c^2 \equiv 1 \pmod{3}$ $abc \equiv 0 \pmod{3}$

To show there is one-to-one correspondence, let: 3p = a, 3q = b, 3r = c $9p^2 + 9q^2 + 9r^2 = 27pqr$ $p^2 + q^2 + r^2 = 3pqr$

Question 3

Case p = 2: $x^4 + 1 = (x^2 + 1)^2 - 2x^2 \equiv (x^2 + 1)^2 \mod 2$ Case p odd, $p \equiv 1 \mod 4 \therefore p = 4k + 1$, some k : $(-1/p) = (-1)^{(p-1)/2} = 1$ there exists y such that $y^2 \equiv (-1) \mod p$ $x^4 + 1 = x^4 - (-1) \equiv x^4 - y^2 \mod p$ $\therefore (x^2 - y)(x^2 + y) \mod p$ $p \equiv 3 \mod p \therefore p = 4k + 3$, some k $(-1/p) = (-1)^{2k+1} = -1 (2/p) = (-1)^{(11k^2 + 24k + 8)/8} = 1$ if k is odd, -1 if k is even. For k odd: $x^4 + 1 = (x^2 + 1)^2 - 2x^2 \equiv (x^2 + 1)^2 - (x^2)(y^2) \mod p \equiv (x^2 - 1 - xy)(x^2 + 1 + xy) \mod p$ For k even: (-2/p) = (-1/p)(2/p) = (-1)(-1) = 1 $x^4 + 1 = (x^2 - 1)^2 - (-2x^2) \equiv ((x^2 - 1)^2 - (y^2)(x^2) \equiv (x^2 - 1 - xy)(x^2 - 1 + xp) \mod p$ mod p

Question 4

Let f be the function defined by $f(x) = x^4 + 1$ Then: $f(x+1) = x^4 + 4x^3 + 6x^2 + 4x + 2$ Using Eisenstein's Criterion with p = 2 we get: $p \mid 4, 6, 4, 2$ $p \nmid 1$ $p^2 \nmid 2$ $\therefore f(x+1)$ is irreducible in $\mathbb{Q}[x]$ Hence, f(x) is irreducible in $\mathbb{Q}[x]$ \therefore by Gauss' Lemma f(x) is irreducible in $\mathbb{Z}[x]$

Question 5

Let $f(x) = x^n + px + bp^2$, p is a prime number, and gcd(b, p) = 1, then $p_0 = (0, \alpha_0) = (0, 2)$, $p_1 = (1, \alpha_1) = (1, 1)$, $p_n = (n, \alpha_n) = (n, 0)$. Since f can be written as $f(x) = a_n' p^{\alpha_n} x^n + a_1' p^{\alpha_1} x + a_0' p^{\alpha_0}$ with $\alpha_n = 0, \alpha_1 = 1, \alpha_0 = 2, a_0' = b, a_1' = 0$ and $a_n' = 0$. Then constructing Newton diagram of f modulo p.

Write $f(x) = (x+c)(x^{n-1}+p)$ with $cx^{n-1} + cp = bp^2$,

by Dumas theorem,

if $c \in \mathbb{Z}$, the edge diagram of f is the centre of diagrams of (x + c) and $(x^{n-1} + p)$, i.e. f(x) has an interger root if $c \notin \mathbb{Z}$, it is irreducible over integers. \therefore As required.

Question 6

We have:

$$f(x) = 9x^{n} + 6(x^{n-1} + x^{n-2} + \dots + x^{2} + x) + 4$$

And we would like to show that f is irreducible in \mathbb{Z} .

We will construct the Newton diagrams of f for p = 2 and p = 3 as these are

the only primes whose positive powers divide at least some of the coefficients of

f and hence will produce useful Newton diagrams with respect to reducibility.

For each of the following cases of p we desire the form of f to be

$$f(x) = a_n p^{\gamma_n} x^n + a_{n-1} p^{\gamma_{n-1}} x^{n-1} + \dots + a_1 p^{\gamma_1} x + a_0 p^{\gamma_0}$$

Case where p = 2:

Keeping the desired form of f in mind,

$$f(x) = 9 \cdot 2^0 + 3 \cdot 2^1 (x^{n-1} + \dots + x) + 1 \cdot 2^2$$

For the Newton diagram we plot the points (n, γ_n) . These are

$$(0,2), (1,1), (2,1), \dots, (n-1,1), (n,0)$$

Giving the Newton diagram:

And hence the edge diagram:

Case where p = 3:

$$f(x) = 1 \cdot 3^2 x^n + 2 \cdot 3^1 (x^{n-1} + \dots + x) + 4 \cdot 3^0$$

Newton Diagram:

Edge Diagram:

Now note that the edge diagram of a product of functions is the union of the edge

diagrams of those functions. So if f = gh then f having an edge diagram consisting of two edges, one of degree 1 and the other of degree n - 1, implies

that deg(g) = 1 and deg(h) = n - 1.

Hence, we can assume that g and h have the form

$$g = ax + b$$

and

$$h = cx^{n-1} + \sum_{i=1}^{n-2} \alpha_i x^i + d$$

And then by the values of the coefficients of f it is clear that

$$g = \pm 3x \pm 2$$

and

$$h = \pm 3x^{n-1} \pm \sum_{i=1}^{n-2} \alpha_i x^i \pm 2$$

Where we have either all coefficients are positive or all are negative. So $(\pm 3x \pm 2)$ is a factor of f. So $f\left(\frac{-2}{3}\right) = 0$

$$f\left(\frac{-2}{3}\right) = 9\left(\frac{-2}{3}\right)^n + 6\left(\sum_{i=1}^{n-1} \left(\frac{-2}{3}\right)^i\right) + 4 = 0$$
$$\frac{(-2)^n}{3^{n-2}} - 4 + \sum_{i=2}^{n-1} \frac{2(-2)^i}{3^{i-1}} + 4 = 0$$
$$\sum_{i=2}^{n-1} \frac{2(-2)^i}{3^{i-1}} = \frac{-(-2)^n}{3^{n-2}}$$
$$\sum_{i=2}^{n-2} \frac{2(-2)^i}{3^{i-1}} = \frac{-(-2)^n}{3^{n-2}} - \frac{2(-2)^n}{3^{n-2}}$$
$$= \frac{-(-2)^n + (-2)^n}{3^{n-2}} = 0$$

And so we have that

$$\sum_{i=2}^{n-2} \frac{2(-2)^i}{3^{i-1}} = 0$$

a contradiction.

So our supposition that f is of the form f = gh is false, so f is irreducible in \mathbb{Z} .

Question 7

Assume f, g non constant As $f^3 - g^2 = 1$, f^3 and g^2 have the same degree. $a = \deg(f^3) = \deg(g^2)$ so $a = 3\deg(f) = 2\deg(g)$ f, g are coprime so

$$a \le \operatorname{No}(f, g, (-1)) - 1 = \operatorname{No}(fg) - 1 \le a/3 + a/2 - 1 = 5a/6 - 1$$

by Mason-Stothers theorem which implies $a/6 \le -1$ this is a contradiction, $\therefore f, g$ are constant