MA2316-Introduction to Number Theory Tutorial 7

Callum MacIver, Jack Geary, Benjamin Levai, Darragh Monnin, Eoghan Sheridan

$20^{\text {th }}$ March 2014

Question 1:

We consider $\mathrm{a}^{\mathrm{k}}-1, \mathrm{k}<\mathrm{n}$.
Since a has order n in $(\mathbb{Z} / \mathrm{p} \mathbb{Z})$ we know that $\mathrm{a}^{\mathrm{k}}-1 \not \equiv 0(\bmod \mathrm{p})$ (otherwise it would not be of order n in $(\mathbb{Z} / \mathrm{p} \mathbb{Z}))$. We also know that, since $\mathrm{d}\left|\mathrm{d}, \Phi_{d}(\mathrm{a})\right|\left(\mathrm{a}^{\mathrm{d}}-1\right)$

$$
=>\mathrm{p} \nmid \Phi_{d}(\mathrm{a}), \mathrm{d} \mid \mathrm{n}, \mathrm{~d}<\mathrm{n}
$$

But $\mathrm{a}^{\mathrm{n}}-1 \equiv 0(\bmod \mathrm{p})$ and $\prod_{d \mid n} \Phi_{d}(\mathrm{a})=\mathrm{a}^{\mathrm{n}}-1$

$$
=>\mathrm{p} \mid \Phi_{n}(\mathrm{a})
$$

Question 2:

$\mathrm{q}\left|\Phi_{n}(\mathrm{a})=>\mathrm{q}\right| \Phi_{n}(\mathrm{a}) \mathrm{f}(\mathrm{a})$
Let $\mathrm{f}(\mathrm{a})=\prod_{d \mid n, d<n} \Phi_{d}(\mathrm{a})$ then $\mathrm{q} \mid\left(\mathrm{a}^{\mathrm{n}}-1\right)$, so $\mathrm{a}^{\mathrm{n}} \equiv 1(\bmod \mathrm{q})$
Let $\mathrm{n}=\mathrm{ms}+\mathrm{b}$, $\mathrm{b}<\mathrm{s}$
$\mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{ms}} \mathrm{a}^{\mathrm{b}} \equiv 1 . \mathrm{a}^{\mathrm{b}}(\bmod \mathrm{q}) \equiv 1(\bmod \mathrm{q})$. This is a contradiction unless $\mathrm{b}=0$.
So $\mathrm{n}=\mathrm{sm}$ for some $\mathrm{m}=>\mathrm{s} \mid \mathrm{n}$
Similarly if we let $q-1=r s+c, c<s$
$\mathrm{a}^{\mathrm{q}-1}=\mathrm{a}^{\mathrm{rs}} \mathrm{a}^{\mathrm{c}} \equiv 1 . \mathrm{a}^{\mathrm{c}}(\bmod \mathrm{q}) \equiv 1(\bmod \mathrm{q})($ by Fermat's Little Theorem). This is a contradiction unless $\mathrm{c}=0$.
So $\mathrm{q}-1=\mathrm{sr}$ for some $\mathrm{r}=>\mathrm{s} \mid \mathrm{q}-1$

Question 3:

$\mathrm{a}^{\mathrm{h}}-1=\prod_{d \mid h} \Phi_{d}(\mathrm{a}), \quad \mathrm{a}^{\mathrm{n}}-1=\prod_{d \mid n} \Phi_{d}(\mathrm{a})$
So $\frac{a^{\mathrm{n}}-1}{a^{\mathrm{h}}-1}=\prod_{d \mid n, d \nmid h} \Phi_{d}(\mathrm{a})$, but $\mathrm{n} \nmid \mathrm{h}, \mathrm{n} \mid \mathrm{n}$,
$\frac{a^{\mathrm{n}}-1}{a^{\mathrm{h}}-1}$ has a factor of $\Phi_{n}(\mathrm{a})$, and can be divided by it.
Let $\mathrm{h}=\mathrm{sk}$, with s being the order of $\mathrm{a},=>\mathrm{k}=\frac{s}{h}$
$\frac{a^{n}-1}{a^{h}-1}=\sum_{j=r}^{1} \mathrm{c}^{\mathrm{j}-1}=\sum_{j=r}^{1}\left(\mathrm{a}^{\mathrm{s}}\right)^{\mathrm{k}(\mathrm{j}-1)} \equiv \sum_{j=r}^{1} 1^{\mathrm{k}(\mathrm{j}-1)} \equiv \mathrm{r}(\bmod \mathrm{q})$
But $\Phi_{n}(\mathrm{a}) \equiv 0(\bmod \mathrm{q})$, so $\mathrm{r} \equiv 0(\bmod \mathrm{q})$, so $\mathrm{r}=\mathrm{q}$.

Question 4:

- p, prime factor of $\Phi_{n}(\mathrm{a})$
$=>p \mid a^{n}-1$, so $a^{n} \equiv 1(\bmod p)$
We know the order of a must divide $\mathrm{p}-1$, but $\mathrm{p} \nmid \mathrm{p}-1$
We also know that the only factors that n can have such that $\mathrm{p} \mid \Phi_{n}(\mathrm{a})$ are p , and the order of a , so we find that the order of $\mathrm{a}=\mathrm{m}$.
- Once again, we know that any product of the order of a in $(\mathbb{Z} / \mathbb{Z})^{x}$ by some other factor to get n.
This only gives $1 \mid \Phi_{n}(\mathrm{a})$ if the factor of n by the product is l raised to some power, so as long as $\operatorname{gcd}(1, \mathrm{~m})=1$, the order of a in $(\mathbb{Z} / \mathbb{Z})$ is m .

Question 5:

To show that $(\mathrm{i})=>(\mathrm{iii}): \mathrm{n} \mid \mathrm{q}-1,=>\mathrm{q}-1 \equiv 0(\bmod \mathrm{n}),=>\mathrm{q} \equiv 1(\bmod \mathrm{n})$
To show that (iii) $=>$ (ii): unless $\mathrm{n}>\mathrm{q}$, $\mathrm{q} \nmid \mathrm{n}$, but q prime, so $\mathrm{q}=\mathrm{mn}+1, \mathrm{~m} \geq 1$, so $\mathrm{q} \nmid \mathrm{n}$
To show that (ii) $=>(\mathrm{i})$: If $q \nmid \mathrm{n}$, and $\Phi_{n}(\mathrm{a}) \equiv 0(\bmod \mathrm{p})$, then by question 4 , a must have order n .
So $(\mathrm{i})=>(\mathrm{iii})=>(\mathrm{ii})=>(\mathrm{i})$
So the statements are equivalent

Question 6:

$n^{n} k^{\mathrm{n}}-1 \equiv 0(\bmod \mathrm{p})$
$\mathrm{p} \nmid \mathrm{n}$ otherwise $\left(\mathrm{n}^{\mathrm{n}} \mathrm{k}^{\mathrm{n}}-1\right) \equiv-1(\bmod \mathrm{p})$
(It will also be useful later on to note that $\mathrm{p} \nmid \mathrm{k}$ otherwise $\left(\mathrm{n}^{\mathrm{n}} \mathrm{k}^{\mathrm{n}}-1\right) \equiv-1(\bmod \mathrm{p})$)
n is the order of $n k$, so $p \equiv 1(\bmod n)$
Assume there are only a finite number, m , of primes p_{i} such that $p_{i} \mid \Phi_{n}(\mathrm{nk})$.
Let $\mathrm{k}=\prod_{i=1}^{m} p_{i}$
Then $p_{i} \nmid \Phi_{n}(\mathrm{nk}) \forall \mathrm{i}$, but as $\Phi_{n}(\mathrm{nk}) \neq 1$,
$\Phi_{n}(\mathrm{nk})=\prod_{d \nmid n, d<n}\left(\mathrm{nk}-e^{i \pi \frac{d}{n}}\right)$ and $\left\|\mathrm{nk}-e^{i \pi \frac{d}{m}}\right\|>1, \forall \mathrm{~d}$, then $\left\|\Phi_{n}(\mathrm{nk})\right\|>1$
So $\Phi_{n}(\mathrm{nk}) \neq 1$, so it must bepossible for it to be expressed as the product of its prime factors, that is, there exists at least one $\mathrm{q}, \mathrm{q} \neq p_{i} \forall \mathrm{i}, \mathrm{such}$ that $\mathrm{q} \nmid \Phi_{n}(\mathrm{nk})$, a contradiction

