Number Theory: Tutorial 8 Solutions

Thomas Bourke, John Doyle, Peter Mulholland, TJ O Sullivan, Lauren Watson
March 31, 2014

1 Question 1

$\Longleftarrow 2^{m} p_{1} p_{2} \ldots p_{s}$ with $p_{i}=2^{2^{k}}+1$ and p_{i} distinct odd primes
We know that φ is multipicative i.e. $\varphi(m n)=\varphi(m) \varphi(n)$ whenever $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$
$\Rightarrow \varphi\left(2^{m} p_{1} p_{2} \ldots p_{s}\right)=\varphi\left(2^{m}\right) \varphi\left(p_{1}\right) \varphi\left(p_{2}\right) \ldots \varphi\left(p_{s}\right)$
Also $\varphi\left(p^{n}\right)=p^{n}\left(1-\frac{1}{p}\right) \Rightarrow \varphi\left(p_{i}\right)=p_{i}-1$
And $\varphi\left(2^{m}\right)=2^{m-1}$
Therefore $\varphi(n)=2^{m-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{s}-1\right)$
$=2^{m-1}\left(2^{2^{k_{1}}}-1\right)\left(2^{2^{k_{2}}}-1\right) \ldots\left(2^{2^{k_{s}}}-1\right)$
$=2^{m-1} 2^{2^{k_{1}}} 2^{2^{k_{2}}} \ldots 2^{2^{k_{s}}}$
$=2^{(m-1)+2^{k_{1}}+2^{k_{2}}+\ldots+2^{k_{s}}}$
\Longrightarrow
$\varphi(n)=2^{k}$
let $n=2^{m} p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$ with p_{i} odd primes and $e_{i} \geq 1$
For $\mathrm{m} \neq 0$
$\varphi(n)=2^{m-1} p_{1}^{e_{1}-1} \ldots p_{s}^{e_{s}-1}\left(p_{1}-1\right) \ldots\left(p_{s}-1\right)$
For $\mathrm{m}=0$
$\varphi(n)=p_{1}^{e_{1}-1} \ldots p_{s}^{e_{s}-1}\left(p_{1}-1\right) \ldots\left(p_{s}-1\right)=2^{k}$
Also $e_{i}=1$ otherwise $\rightarrow p_{i} \mid 2^{k}$ which is a contradiction
Then $\varphi(n)=\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{s}-1\right)=2^{k}$
$\Rightarrow p_{i}-1=2^{q}$
$2^{q}+1$ can only be prime if $q=2^{k}$
$\Rightarrow p_{i}=2^{2^{k}}+1 \mathrm{C}$

2 Question 2

We need to show $\varphi(n)=6$
$\varphi(a b)=\varphi(a) \varphi(b) \Longleftrightarrow \operatorname{gcd}(a, b)=1$
$n=2^{m} p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}} p_{i}$ odd distinct primes
case $\mathrm{s}=0$:
$\Longrightarrow \varphi\left(2^{m}\right) \neq 6 \forall \mathrm{~m}$
Case $s \geq 2$:
$\Longrightarrow \varphi(n)=\varphi\left(2^{m}\right) \varphi\left(p_{1}^{a_{1}}\right) \varphi\left(p_{2}^{a_{2}}\right) \ldots$
$\Longrightarrow 4 \mid \varphi(n) \Longrightarrow \varphi(n) \neq 6$
Case $\mathrm{s}=1: \Longrightarrow n=2^{m} p^{a}$
$\Longrightarrow \varphi(n)=\varphi\left(2^{m}\right) \varphi\left(p^{a}\right)$
$n>2 \varphi(n)=2 x \mathrm{x} \in \mathbb{Z}$
$\Longrightarrow \varphi(b)=6 \forall b$
Solutions: $3^{2}, 2\left(3^{2}\right), 7,2(7)$
$=7,9,14,28$
$\varphi(\varphi(n))=6 \Longrightarrow \varphi(n)=7,9,14,18$
$\varphi(n) \neq 7$ or 9
$n=2^{m} p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$
Take $\mathrm{s}=1 \Longrightarrow n=2^{m} p^{a}$
$\mathrm{m}=2 \Longrightarrow \varphi(4)=2 \Longrightarrow \varphi\left(p^{a}\right)=7 \Longrightarrow$ contradiction
Leaves $\mathrm{m}=0,1 \Longrightarrow \varphi\left(2^{m}\right)=1 \Longrightarrow \varphi\left(p^{a}\right)=14 \Longrightarrow$ contradiction
$\varphi(n)=\varphi\left(2^{m}\right) \varphi\left(p^{a}\right)=18$
$\nexists \mathrm{n}$ s.t $\varphi(n)=3$ or 9
$\Longrightarrow \varphi\left(2^{m}\right)=1 \Longrightarrow m=0,1$
and $\varphi\left(p^{a}\right)=18 \Longrightarrow \mathrm{p}=19, \mathrm{a}=1$ or $\mathrm{p}=3, \mathrm{a}=3$
Solutions $19,2(19), 3^{3}, 2\left(3^{3}\right)$
$\Longrightarrow 19,27,38,54$

3 Question 3

Solve the equation a) $\varphi(n)=n / 2 ; \mathbf{b}) \varphi(n)=2 n / 3$
a) $\varphi(n)=n / 2 \Leftrightarrow \phi / n=1 / 2$
$\phi\left(p^{k}\right)=p^{k} \Pi_{p \mid p^{k}}(1-1 / p)=p^{k}(1-1 / p)=p^{k-1}(p-1)$
As the function is multiplicative;

$$
\begin{aligned}
& \phi(n)=\phi\left(p^{a_{1}} \ldots p_{k}^{a_{k}}\right) \\
& =\phi\left(p _ { 1 } ^ { a _ { 1 } } \ldots \phi \left(p_{k}^{a_{k}}\right.\right. \\
& =\left(p_{1}-1\right) p_{1}^{a_{1}-1} \ldots\left(p_{k}-1\right) p_{k}^{a_{k}-1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\phi(n)}{n}=\frac{\left(p_{1}-1\right) p_{1}^{a_{1}-1} \ldots\left(p_{k}-1\right) p_{k}^{a_{k}-1}}{p_{1}^{a_{1} \ldots p_{k}^{a_{k}}}} \\
& \frac{\left(p_{1}-1\right) \ldots\left(p_{k}-1\right)}{p_{1} \ldots p_{k}}=1 / 2 \\
& \Rightarrow 2\left(p_{1}-1\right) \ldots\left(p_{k}-1\right)=p_{1} \ldots p_{k}
\end{aligned}
$$

$\Rightarrow 2$ must divide $p_{1} \ldots p_{k}$
Say $p_{1}=2$
$\left(p_{2}-1\right)\left(p_{3}-1\right) \ldots\left(p_{k}-1\right)=p_{2} \ldots p_{k}$
The LHS is strictly smaller than RHS. $p_{2} \ldots p_{k}$ cannot be prime factors of n because if they were then $p_{i}-1$ wouldn't divide the RHS.
b) This follows similar reasoning to part a), up to $3\left(p_{1}-1\right) \ldots\left(p_{r}-1\right)=2 p_{1} \ldots p_{r}$

Given $3 \mid p_{1} \ldots p_{r}$, we can say $2 \mid p_{i}-1$ for some $1 \leq i \leq r$ Thus the LHS is divisible by 2 , so we can write $\left(p_{1}-1\right) \ldots\left(p_{r}-1\right)=p_{1} \ldots p_{r}$ which has no solutions.
Hence $p_{1}=3$ is the only prime.

4 Question 4

4. f,g are two functions with complex values defined on

$$
\begin{equation*}
[0, \infty) \tag{1}
\end{equation*}
$$

Assume that: $\sum_{k, d \geqslant 1\left(f\left(\frac{x}{k d}\right)\right)}<\infty$
Show that if:

$$
\begin{equation*}
g(x)=\sum_{d \geqslant 1}\left(f\left(\frac{x}{d}\right)\right) \tag{2}
\end{equation*}
$$

Then:

$$
\begin{equation*}
f(x)=\sum_{d \geqslant 1} \mu(d) G\left(\frac{x}{d}\right) \tag{3}
\end{equation*}
$$

Since:

$$
\begin{gather*}
f(x)=\sum_{d \geqslant 1} \mu(d) G\left(\frac{x}{d}\right) \tag{4}\\
\sum_{d \geqslant 1} \mu(d) G\left(\frac{x}{d}\right)=\sum_{d \geqslant 1} \mu(d) \sum_{d \geqslant 1} G\left(\frac{x}{k d}\right) \tag{5}
\end{gather*}
$$

As this is absolutely convergent the term in it can be rearranged

$$
\begin{equation*}
=\sum_{d \geqslant 1} \sum_{k \geqslant 1} \mu(d) G\left(\frac{x}{k d}\right) \tag{6}
\end{equation*}
$$

Now let $\mathrm{r}=\mathrm{xd}$:

$$
\begin{align*}
& =\sum_{r \geqslant 1} \sum_{d \mid r} \mu(d) G\left(\frac{x}{r}\right) \tag{7}\\
& =\sum_{r \geqslant 1} \sum_{d \mid r} G\left(\frac{x}{r}\right) \mu(d) \tag{8}
\end{align*}
$$

This equation equals 0 if

$$
\begin{equation*}
r \neq 1 \tag{9}
\end{equation*}
$$

$$
=\mathrm{f}(\mathrm{x})
$$

5 Question 5

Prove that

$$
\Phi_{n}(x)=\Pi_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}
$$

Using this formula, compute $\Phi_{6}(x)$ and $\Phi_{10}(x)$. Also, use your favourite computer software (or do it by hand if you feel brave) to verify that $\Phi_{105}(x)$ has a coefficient not equal to $0,-1,1$. What is that coefficient, and at which power of x does it occur?

$$
x^{n}-1=\Pi_{d \mid n} \Phi_{d}(x) \quad \text { where } x \mid n
$$

We are going to use Moebius inversion but there is a slight problem with this, in that x^{n-1} is expressed in terms of a product instead of a sum. So we take the logarithm of it.

$$
\begin{aligned}
& \ln \left(x^{n}-1\right)=\sum_{d \mid n} \ln \Phi_{d}(x) \\
& \ln \left(\Phi_{n}(x)\right)=\sum_{d \mid n} \mu(d) \ln \left(x^{n / d}-1\right) \quad d \longleftrightarrow \frac{n}{d} \\
&=\sum_{\substack{d^{\prime} \left\lvert\, n \\
d^{\prime}=\frac{n}{d}\right.}} \mu\left(\frac{n}{d^{\prime}}\right) \ln \left(x^{d^{\prime}}-1\right) \\
&=\ln \left(\Pi_{d^{\prime} \mid n}\left(x^{d^{\prime}}-1\right)^{\mu\left(\frac{n}{d^{\prime}}\right)}\right) \\
& \Rightarrow \quad \Phi_{n}(x)=\Pi_{d^{\prime} \mid n}\left(x^{d^{\prime}}-1\right)^{\mu\left(\frac{n}{d^{\prime}}\right)} \text { as required }
\end{aligned}
$$

So we get,

$$
\begin{aligned}
\Phi_{6}(x) & =\frac{\left(x^{6}-1\right)(x-1)}{\left(x^{2}-1\right)\left(x^{3}-1\right)} \\
& =x^{2}-x+1 \\
\Phi_{10}(x) & =\frac{\left(x^{10}-1\right)(x-1)}{\left(x^{2}-1\right)\left(x^{5}-1\right)} \\
& =x^{4}-x^{3}+x^{2}+x+1
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{105}(x) & =\frac{\left(x^{105}-1\right)\left(x^{3}-1\right)\left(x^{5}-1\right)\left(x^{7}-1\right)}{\left(x^{15}-1\right)\left(x^{21}-1\right)\left(x^{35}-1\right)(x-1)} \\
& =\ldots \ldots \text { using computer } \ldots \ldots \\
& =x^{48}+\ldots-2 x^{41} \ldots-2 x^{7} \ldots+1
\end{aligned}
$$

Therefore the coefficients of x^{41} and x^{7} are both -2 and not 0,1 or -1

6 Question 6

(i)

Suppose $\mathrm{n}=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$
$\tau(n)$ is the 'number of divisors of n ' function, its value at an integer n is equal to the number of positive integer divisors of n

We can show that $\tau(m n)=\tau(m) \tau(n)$ for $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$ i.e τ is multipicative
Also $\tau\left(p_{i}^{a_{i}}\right)=a^{i}+1$
Therefore $\tau(n)=\left(a_{1}+1\right)\left(a_{2}+1\right) \ldots\left(a_{k}+1\right)=\prod_{1}^{k}\left(a_{i}+1\right)$
(ii)
$\sigma(n)$ is the 'number of divisors of n ' function, its value at an integer n is the sum of all positive integer divisors of n

We can show that σ is also multipicative
We know that for any prime p: $\sigma(p)=p+1$ as p's only divisors are itself and 1
(1) For $\sigma\left(p_{i}^{a_{i}}\right)=1+p_{i}+p_{i}^{2}+\ldots+p_{i}^{a_{i}}$
(2) Now $p \sigma\left(p_{i}^{a_{i}}\right)=p_{i}+p_{i}^{2}+\ldots+p_{i}^{a_{i}+1}$
(1)-(2) $=\left(p_{i}-1\right) \sigma\left(p_{i}^{a_{i}}\right)=p_{i}^{a_{i}+1}$
$\Rightarrow \sigma\left(p_{i}^{a_{i}}\right)=\frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}$
$\Rightarrow \sigma(n)=\prod_{1}^{k} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}$

