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1 Question 1

⇐=
n = 2mp1p2...ps with pi = 22

k

+ 1 and pi distinct odd primes

We know that ϕ is multipicative i.e. ϕ(mn) = ϕ(m)ϕ(n) whenever gcd(m,n)=1

⇒ ϕ(2mp1p2...ps) = ϕ(2m)ϕ(p1)ϕ(p2)...ϕ(ps)

Also ϕ(pn) = pn(1− 1
p )⇒ ϕ(pi) = pi − 1

And ϕ(2m) = 2m−1

Therefore ϕ(n) = 2m−1(p1 − 1)(p2 − 1)...(ps − 1)

= 2m−1(22
k1 − 1)(22

k2 − 1)...(22
ks − 1)

= 2m−122
k1

22
k2
...22

ks

= 2(m−1)+2k1+2k2+...+2ks

=⇒
ϕ(n) = 2k

let n = 2mpe11 p
e2
2 ...p

es
s with pi odd primes and ei ≥ 1

For m 6= 0

ϕ(n) = 2m−1pe1−11 ...pes−1s (p1 − 1)...(ps − 1)

For m=0

ϕ(n) = pe1−11 ...pes−1s (p1 − 1)...(ps − 1) = 2k

Also ei = 1 otherwise → pi|2k which is a contradiction

Then ϕ(n) = (p1 − 1)(p2 − 1)...(ps − 1) = 2k

⇒ pi − 1 = 2q

2q + 1 can only be prime if q = 2k

⇒ pi = 22
k

+ 1C
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2 Question 2

We need to show ϕ(n) = 6
ϕ(ab) = ϕ(a)ϕ(b)⇐⇒ gcd(a, b) = 1
n = 2mpa11 p

a2
2 ...p

ak
k pi odd distinct primes

case s=0:
=⇒ ϕ(2m) 6= 6 ∀m

Case s≥ 2:
=⇒ ϕ(n) = ϕ(2m)ϕ(pa11 )ϕ(pa22 )...
=⇒ 4 | ϕ(n) =⇒ ϕ(n) 6= 6

Case s=1:=⇒ n = 2mpa

=⇒ ϕ(n) = ϕ(2m)ϕ(pa)
n > 2 ϕ(n) = 2x x ε Z
=⇒ ϕ(b) = 6 ∀b
Solutions: 32, 2(32), 7, 2(7)
= 7, 9, 14, 28

ϕ(ϕ(n)) = 6 =⇒ ϕ(n) = 7, 9, 14, 18
ϕ(n) 6=7 or 9
n = 2mpa11 p

a2
2 ...p

ak
k

Take s=1 =⇒ n = 2mpa

m=2=⇒ ϕ(4) = 2 =⇒ ϕ(pa) = 7 =⇒ contradiction
Leaves m=0,1=⇒ ϕ(2m) = 1 =⇒ ϕ(pa) = 14 =⇒ contradiction
ϕ(n) = ϕ(2m)ϕ(pa) = 18
@ n s.t ϕ(n) =3 or 9
=⇒ ϕ(2m) = 1 =⇒ m = 0, 1
and ϕ(pa) = 18 =⇒ p=19,a=1 or p=3,a=3
Solutions 19,2(19),33, 2(33)
=⇒ 19,27,38,54

3 Question 3

Solve the equation a) ϕ(n) = n/2;b)ϕ(n) = 2n/3

a) ϕ(n) = n/2⇔ φ/n = 1/2
φ(pk) = pkΠp|pk(1− 1/p) = pk(1− 1/p) = pk−1(p− 1)

As the function is multiplicative;

φ(n) = φ(pa1 ...pakk )

= φ(pa11 ...φ(pakk

= (p1 − 1)pa1−11 ...(pk − 1)pak−1k
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φ(n)
n =

(p1−1)p
a1−1
1 ...(pk−1)p

ak−1

k

p
a1
1 ...p

ak
k

(p1−1)...(pk−1)
p1...pk

= 1/2

⇒ 2(p1 − 1)...(pk − 1) = p1...pk
⇒ 2 must divide p1...pk
Say p1 = 2
(p2 − 1)(p3 − 1)...(pk − 1) = p2...pk
The LHS is strictly smaller than RHS. p2...pk cannot be prime factors of n be-
cause if they were then pi − 1 wouldn’t divide the RHS.

b) This follows similar reasoning to part a), up to
3(p1 − 1)...(pr − 1) = 2p1...pr

Given 3|p1...pr, we can say 2|pi − 1 for some 1 ≤ i ≤ r
Thus the LHS is divisible by 2, so we can write
(p1 − 1)...(pr − 1) = p1...pr which has no solutions.
Hence p1 = 3 is the only prime.

4 Question 4

4. f,g are two functions with complex values defined on

[0,∞) (1)

Assume that:
∑

k,d>1(f( x
kd ))

<∞

Show that if:
g(x) =

∑
d>1

(f(
x

d
)) (2)

Then:
f(x) =

∑
d>1

µ(d)G(
x

d
) (3)

Since:
f(x) =

∑
d>1

µ(d)G(
x

d
) (4)

∑
d>1

µ(d)G(
x

d
) =

∑
d>1

µ(d)
∑
d>1

G(
x

kd
) (5)

As this is absolutely convergent the term in it can be rearranged

=
∑
d>1

∑
k>1

µ(d)G(
x

kd
) (6)

Now let r = xd:
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=
∑
r>1

∑
d|r

µ(d)G(
x

r
) (7)

=
∑
r>1

∑
d|r

G(
x

r
)µ(d) (8)

This equation equals 0 if
r 6= 1 (9)

=f(x)

5 Question 5

Prove that
Φn(x) = Πd|n(xd − 1)µ(n/d)

Using this formula, compute Φ6(x) and Φ10(x). Also, use your favourite com-
puter software (or do it by hand if you feel brave) to verify that Φ105(x) has a
coefficient not equal to 0, -1, 1. What is that coefficient, and at which power of
x does it occur?

xn − 1 = Πd|nΦd(x) where x|n
We are going to use Moebius inversion but there is a slight problem with this,
in that xn−1 is expressed in terms of a product instead of a sum. So we take
the logarithm of it.

ln(xn − 1) =
∑
d|n

lnΦd(x)

ln(Φn(x)) =
∑
d|n

µ(d)ln(xn/d − 1) d←→ n
d

=
∑
d′|n
d′=n

d

µ(
n

d′
)ln(xd

′
− 1)

= ln(Πd′|n(xd
′
− 1)µ(

n
d′ ))

⇒ Φn(x) = Πd′|n(xd
′
− 1)µ(

n
d′ ) as required

So we get,

Φ6(x) = (x6−1)(x−1)
(x2−1)(x3−1)

= x2 − x+ 1

Φ10(x) = (x10−1)(x−1)
(x2−1)(x5−1)

= x4 − x3 + x2 + x+ 1
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Φ105(x) = (x105−1)(x3−1)(x5−1)(x7−1)
(x15−1)(x21−1)(x35−1)(x−1)

= . . . . . . using computer . . . . . .

= x48 + . . .− 2x41 . . .− 2x7 . . .+ 1

Therefore the coefficients of x41 and x7 are both −2 and not 0, 1 or −1

6 Question 6

(i)

Suppose n=pa11 p
a2
2 ...p

ak
k

τ(n) is the ’number of divisors of n’ function, its value at an integer n is
equal to the number of positive integer divisors of n

We can show that τ(mn) = τ(m)τ(n) for gcd(m,n) = 1 i.e τ is multipicative

Also τ(paii ) = ai + 1

Therefore τ(n) = (a1 + 1)(a2 + 1)...(ak + 1) =
∏k

1(ai + 1)

(ii)

σ(n) is the ’number of divisors of n’ function, its value at an integer n is the
sum of all positive integer divisors of n

We can show that σ is also multipicative

We know that for any prime p: σ(p) = p + 1 as p’s only divisors are itself
and 1

(1) For σ(paii ) = 1 + pi + p2i + ...+ paii

(2) Now pσ(paii ) = pi + p2i + ...+ pai+1
i

(1)-(2) = (pi − 1)σ(paii ) = pai+1
i

⇒ σ(paii ) =
p
ai+1

i −1
pi−1

⇒ σ(n) =
∏k

1
p
ai+1

i −1
pi−1
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