Tutorial 9

Konrad Timon, Leo Jannsens, Conor McMeel, Daniel Vernon, Niall Thornton

April 8, 2014

1 Question 1

Assume $\log _{2} 9 \in Q$
$\log _{2} 9=2 \log _{2} 3$
As $\log _{2} 9 \in Q$
$\log _{2} 3=\frac{p}{q}$
$q \log _{2} 3=p$
$\log _{2} 3^{q}=p$
$3^{q}=2^{p}$
Contradiction
$\log _{2} 9$ is irrational
Take
$(\sqrt{2})^{\log _{2} 9}=3$

2 Question 2:

Show that $\sqrt{2}+\sqrt{3}$ is an algebraic number and find it's minimal polynomial.
x algebraic $\Leftrightarrow \mathrm{x}$ is a root of a polynomial with rational coefficients
$x=\sqrt{2}+\sqrt{3} \Leftrightarrow x^{2}=(\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6}$
$\Leftrightarrow x^{2}-5=2 \sqrt{6} \Leftrightarrow\left(x^{2}-5\right)^{2}=(2 \sqrt{6})^{2} \Leftrightarrow x^{4}-10 x^{2}+25=24$
so we have found a polynomial $x^{4}-10 x^{2}+1=0$ which has $x=\sqrt{2}+\sqrt{3}$ as a root $\Rightarrow \mathrm{x}$ is algebraic
$x^{4}-10 x^{2}+1=0$ is also the minimal polynomial for $x=\sqrt{2}+\sqrt{3}$ since $x^{4}-10 x^{2}+1=$ $(x+\sqrt{2}+\sqrt{3})(x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x-\sqrt{2}-\sqrt{3})$ which is a product of irreducible elements in $\mathrm{Q}[\mathrm{x}]$

3 Question 3:

We must show that $e=\sum_{n \geq 0} \frac{1}{n!}$ is not algebraic of degree 2, i.e it is not the solution to any polynomial over the rationals of degree 2. Assume the contrary, if $a e^{2}+b e+c=0$ then $a e+b+c e^{-1}=0 \Rightarrow a e+c e^{-1}=-b \in Q$

Expanding the series:

$$
a e+c e^{-1}=a \sum_{n \geq 0} \frac{1}{n!}+c \sum_{n \geq 0} \frac{(-1)^{n}}{n!}=\sum_{n \geq 0} \frac{a+(-1)^{n} c}{n!}
$$

Consider $\frac{p_{m}}{q_{m}}=\sum_{n=0}^{m} \frac{a+(-1)^{n} c}{n!}$ so $q_{m}=m!$

$$
\begin{gathered}
\frac{1}{q q_{m}} \leq\left|\frac{p_{m}}{q_{m}}-\frac{p}{q}\right|=\left|\frac{p_{m}}{q_{m}}-\left(a e+c e^{-1}\right)\right|=\left|\sum_{n>m} \frac{a+c(-1)^{n}}{n!}\right| \leq \sum_{n>m} \frac{|a|+|c|}{n!} \\
<\frac{|a|+|c|}{(m+1)!}\left(\frac{1}{m}+\frac{1}{(m+1)(m+2)}+\cdots\right) \Rightarrow \frac{1}{m!q}<\frac{2(|a|+|c|)}{(m+1)!} \Rightarrow(m+1)<2 q(|a|+|c|)
\end{gathered}
$$

And this is not true for all m (i.e not true for m large enough), a contradiction. Hence e is not an algebraic number of degree 2 .

4 Question 4:

Let $a=\sum_{k \geq 0} \frac{2^{2^{k}}}{3^{k}}, \frac{p_{n}}{q_{n}}=\sum_{0 \leq k \leq n} \frac{2^{2^{k}}}{3^{k}}$, so that $q_{n}=3^{n^{n}}$. We have

$$
\left|a-\frac{p_{n}}{q_{n}}\right|=\sum_{k>n} \frac{2^{2^{k}}}{3^{k^{k}}} \leq \frac{2^{2^{n+1}}}{3^{(n+1)^{n+1}}}\left(1+\frac{1}{3}+\frac{1}{9}+\ldots\right)=\frac{3 \cdot 2^{2^{n+1}}}{2 \cdot 3^{(n+1)^{n+1}}},
$$

because for $n, l>1$ we have

$$
\begin{aligned}
& \frac{2^{2^{n+l}-2^{n+1}}}{3^{(n+l)^{n+l}-(n+1)^{n+1}}<\frac{3^{2^{n+l}-2^{n+1}}}{3^{(n+l)^{n+l}-(n+1)^{n+1}}}<} \begin{aligned}
<\frac{1}{3^{(n+l)^{n+l}-(n+1)^{n+1}-2^{n+l}}} & <\frac{1}{3^{(n+l-2)(n+l)^{n+l-1}-(n+1)^{n+1}}}< \\
& <\frac{1}{3^{2(n+2)^{n+l-1}-(n+1)^{n+1}}}<\frac{1}{3^{(n+2)^{n+l-1}}}<\frac{1}{3^{l-1} .}
\end{aligned} . . \begin{aligned}
\end{aligned} \\
&
\end{aligned}
$$

If a were algebraic of degree $k>1$, then we would have $\left|a-\frac{p_{n}}{q_{n}}\right|>\frac{C}{q_{n}^{k}}$ for some $C>0$, and this would imply

$$
\frac{C}{3^{k \cdot n^{n}}}<\frac{3 \cdot 2^{2^{n+1}}}{2 \cdot 3^{(n+1)^{n+1}}}<\frac{3 \cdot 3^{2^{n+1}}}{2 \cdot 3^{(n+1)^{n+1}}}
$$

or

$$
3^{(n-1-k) n^{n}}=3^{(n+1) n^{n}-2 n^{n}-k \cdot n^{n}}<3^{(n+1)^{n+1}-2^{n+1}-k \cdot n^{n}}<\frac{3}{2 C},
$$

which is clearly impossible for large n. Also, a is irrational because if $a=\frac{p}{q}$, we have $\left|\frac{p}{q}-\frac{p_{n}}{q_{n}}\right|=$ $\frac{\left|p_{n} q-p q_{n}\right|}{q q_{n}}>\frac{1}{q q_{n}}$, and we get a contradiction in the same way as above.

5 Question 5:

Suppose D is a positive integer that is not a perfect square. Let $A>2 \sqrt{D}$. We must show that only finitely many rational numbers $\frac{m}{n}$ satisfy $\left|\frac{m}{n}-\sqrt{D}\right|<\frac{1}{A n^{2}}$

$$
\left|\frac{m}{n}-\sqrt{D}\right|=\left|\frac{\frac{m^{2}}{n^{2}}-D}{\frac{m}{n}+\sqrt{D}}\right|
$$

Multiplying by n^{2} gives: $\left|\frac{m^{2}-n^{2} D}{\frac{m}{n}+\sqrt{D}}\right|<\frac{1}{A}$

$$
\Rightarrow \frac{1}{\left|\frac{m}{n}+\sqrt{D}\right|} \leq\left|\frac{m^{2}-n^{2} D}{\frac{m}{n}+\sqrt{D}}\right|<\frac{1}{A} \Rightarrow\left|\frac{m}{n}+\sqrt{D}\right|>A
$$

So now we have (using the triangle inequality):

$$
A<\left|\frac{m}{n}+\sqrt{D}\right| \leq\left|\frac{m}{n}-\sqrt{D}\right|+2 \sqrt{D} \leq \frac{1}{A n^{2}}+2 \sqrt{D}
$$

And so: $\Rightarrow A-2 \sqrt{D} \leq \frac{1}{A n^{2}}$
If n is large enough $\Rightarrow A \leq 2 \sqrt{D} \Rightarrow$ finitely many choices for n .
And also notice that for each n (which we now know is a finite amount) finitely many m satisfy $\left|\frac{m}{n}-\sqrt{D}\right|<\frac{1}{A n^{2}}$
So only finitely many rational numbers satisfy the inequality for $A>2 \sqrt{D}$.

6 Question 6:

Show that $\frac{1}{\pi} \sin ^{-1}\left(\frac{3}{5}\right)$ is irrational.
Assume the contrary.

$$
\frac{1}{\pi} \sin ^{-1}\left(\frac{3}{5}\right)=\frac{p}{q}
$$

We have

$$
\sin \left(\frac{p}{q} \pi\right)=\frac{3}{5} \Rightarrow \cos \left(\frac{p}{q} \pi\right)=\frac{4}{5}
$$

Consider the complex number

$$
\begin{aligned}
z & =\cos \left(\frac{p}{q} \pi\right)+i \sin \left(\frac{p}{q} \pi\right) \\
& =\frac{4}{5}+i \frac{3}{5} \\
& =\frac{4+3 i}{5} \\
& =\frac{i(2+i)^{2}}{(2+i)(2-i)} \\
& =\frac{i(2+i)}{(2-i)} \\
\Rightarrow z^{2 q} & =\cos (2 p \pi)+i \sin (2 p \pi) \\
& =1 \\
\therefore \frac{i^{2 q}(2+i)^{2 q}}{(2-i)^{2 q}} & =1 \\
\Rightarrow i^{2 q}(2+i)^{2 q} & =(2-i)^{2 q}
\end{aligned}
$$

Since $\mathbb{Z}[\mathrm{i}]$ is a unique factorisation domain, this is only true for $q=0$, a contradiction. Our assumption is false and $\frac{1}{\pi} \sin ^{-1}\left(\frac{3}{5}\right)$ is irrational.

