MA2316: study week challenge
Choose Part A ("theoretical") or Part B ("practical"). To earn marks, you should solve correctly at least three questions. If three of your solutions are correct, you will earn 4% towards the continuous assessment mark. If all solutions are correct, you will get a 1% bonus, so 5% in total.

Submit your solutions in the first class after the reading week. Please do not forget to put your name and student number on your script.

Part A

1. Show that $\mathcal{O}_{\sqrt{D}}$ is norm-Euclidean if and only if for each $z \in \mathbb{Q}(\sqrt{D})$ there exists $\alpha \in \mathcal{O}_{\sqrt{D}}$ with $\mathrm{N}(z-\alpha)<1$. Further, show that for each $\alpha \in \mathcal{O}_{\sqrt{69}}$ we have $N\left(\frac{4}{23} \sqrt{69}-\alpha\right) \geqslant \frac{25}{23}$, and conclude that $\mathcal{O}_{\sqrt{69}}$ is not norm-Euclidean.
2. Show that for each square-free odd integer $\mathrm{D}>1$, there exists some integer n such that the Jacobi symbol $\left(\frac{n}{D}\right)$ is equal to -1 .
3. Show that for each n the congruence $x^{7}+y^{7} \equiv z^{7}\left(\bmod 7^{n}\right)$ admits a nontrivial solution, that is, a solution for which none of the x, y, z is zero in $\mathbb{Z} / 7^{n} \mathbb{Z} .\left(\right.$ Hint: $\left.1^{7}+2^{7} \equiv 3^{7}(\bmod 7)\right)$.
4. Let A be a square $n \times n$-matrix with integer entries, and let p be a prime. Show that $\operatorname{tr}\left(\mathcal{A}^{\mathfrak{p}^{n}}\right) \equiv \operatorname{tr}\left(\mathcal{A}^{\mathfrak{p}^{n-1}}\right)\left(\bmod \mathfrak{p}^{n}\right)$.

Part B

1. Compute $\operatorname{gcd}(103+363 i, 233+387 i)$ in $\mathbb{Z}[i]$.
2. Utilise modular arithmetics mod 90 to find, without calculators or computers, which integer n satisfies

$$
\mathrm{n}^{23}=3792643488006829893221399440992214604544311 .
$$

(Hint: " m modulo 10 " is a synonym to "the last digit of m in decimal notation", and " m modulo 9 " is a synonym to "the sum of digits of m ").
3. Describe all solutions to the congruence

$$
x^{2}+x+1 \equiv 0 \quad(\bmod 507) .
$$

4. Describe all primes p for which the congruence $\chi^{4} \equiv-1(\bmod p)$ has solutions.
